

The Road to learn React
Your journey to master plain yet pragmatic React

Robin Wieruch

This book is for sale at http://leanpub.com/the-road-to-learn-react

This version was published on 2018-10-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 Robin Wieruch

http://leanpub.com/the-road-to-learn-react
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Robin Wieruch by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I am going to learn #ReactJs with The Road to learn React by @rwieruch Join me on my journey
https://roadtoreact.com

The suggested hashtag for this book is #ReactJs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#ReactJs

http://twitter.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20learn%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20learn%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/search?q=%23ReactJs
https://twitter.com/search?q=%23ReactJs

Contents

Foreword . i

About the Author . ii

Testimonials . iii

Education for Children . iv

FAQ . v

Change Log . vii

Challenge . ix

Introduction to React . 1
Hi, my name is React. 2
Requirements . 4
Installation . 7
Zero-Configuration Setup . 8
Introduction to JSX . 11
ES6 const and let . 14
ReactDOM . 16
Hot Module Replacement . 17
Complex JavaScript in JSX . 19
ES6 Arrow Functions . 23
ES6 Classes . 25

Basics in React . 28
Local Component State . 29
ES6 Object Initializer . 32
Unidirectional Data Flow . 34
Bindings . 39
Event Handler . 44
Interactions with Forms and Events . 49
ES6 Destructuring . 56
Controlled Components . 58

CONTENTS

Split Up Components . 60
Composable Components . 63
Reusable Components . 65
Component Declarations . 68
Styling Components . 71

Getting Real with APIs . 78
Lifecycle Methods . 79
Fetching Data . 82
ES6 Spread Operators . 86
Conditional Rendering . 89
Client- or Server-side Search . 92
Paginated Fetch . 97
Client Cache . 101
Error Handling . 108
Axios instead of Fetch . 112

Code Organization and Testing . 116
ES6 Modules: Import and Export . 117
Code Organization with ES6 Modules . 120
Snapshot Tests with Jest . 125
Unit Tests with Enzyme . 131
Component Interface with PropTypes . 133
Debugging with React Developer Tools . 137

Advanced React Components . 139
Ref a DOM Element . 140
Loading … . 144
Higher-Order Components . 148
Advanced Sorting . 152

State Management in React . 165
Lifting State . 166
Revisited: setState() . 173
Taming the State . 178

Final Steps to Production . 180
Eject . 181
Deploy your App . 182

Outline . 183

Foreword
The Road to learn React teaches the fundamentals of React. You will build a real-world application
in plain React without complicated tooling. Everything from project setup to deployment on a server
will be explained for you. The book comes with additional referenced reading material and exercises
with each chapter. After reading the book, you will be able to build your own applications in React.
The material is kept up to date by myself and the community.

In the Road to learn React, I offer a foundation before you dive into the broader React ecosystem. The
concepts will have less tooling and less external state management, but a lot of information about
React. It explains general concepts, patterns, and best practices in a real world React application.

Essentially, you will learn to build your own React application from scratch, with features like
pagination, client-side caching, and interactions like searching and sorting. Additionally, you will
transition from JavaScript ES5 to JavaScript ES6. I hope this book captures my enthusiasm for React
and JavaScript, and that it helps you get started with it.

About the Author
I am a German software and web engineer dedicated to learning and teaching programming in
JavaScript. After obtaining my Master’s Degree in computer science, I continued learning on my
own. I gained experience from the startup world, where I used JavaScript intensively during both
my professional life and spare time, which eventually led to a desire to teach others about these
topics.

For a few years, I worked closely with an exceptional team of engineers at a company called Small
Improvements, developing large scale applications. The company offered a SaaS product that enables
customers to give feedback to businesses. This application was developed using JavaScript on its
frontend, and Java as its backend. The first iteration of Small Improvements’ frontend was written
in Java with the Wicket Framework and jQuery. When the first generation of SPAs became popular,
the company migrated to Angular 1.x for its frontend application. After using Angular for over two
years, it became clear that Angular wasn’t the best solution to work with state intense applications,
so they made the jump to React and Redux. This enabled it to operate on a large scale successfully.

During my time in the company, I regularly wrote articles about web development on my website.
I received great feedback from people learning from my articles which allowed me to improve his
writing and teaching style. Article after article, I grew my ability to teach others. I felt that my first
articles were packed with too much information, quite overwhelming for students, but I improved
by focusing on one subject at a time.

Currently, I am a self-employed software engineer and educator. I find it a fulfilling pastime to
see students thrive by giving them clear objectives and short feedback loops. You can find more
information about me and ways to support and work with me on my website¹.

¹https://www.robinwieruch.de/about

https://www.robinwieruch.de/about
https://www.robinwieruch.de/about

Testimonials
There are many testimonials², ratings³ and reviews⁴ about the book that you can read to ascertain
its quality. I am proud of it, and I never expected such overwhelming feedback. I would love to
find your rating/review. It helps me to spread the word about the book and make improvements for
future projects. The following shows a short excerpt of these voices:

Muhammad Kashif⁵: “The Road to Learn React is a unique book that I recommend to any student
or professional interested in learning react basics to advanced level. It is packed with insightful tips
and techniques that are hard to find elsewhere, and remarkably thorough in its use of examples and
references to sample problems, i have 17 years of experience in web and desktop app development,
and before reading this book i was having trouble in learning react, but this book works like magic.”

Andre Vargas⁶: “The Road to Learn React by Robin Wieruch is such an awesome book! Most of
what I learned about React and even ES6 was through it!”

Nicholas Hunt-Walker, Instructor of Python at a Seattle Coding School⁷: “This is one of the
most well-written & informative coding books I’ve ever worked through. A solid React & ES6
introduction.”

Austin Green⁸: “Thanks, really loved the book. Perfect blend to learn React, ES6, and higher level
programming concepts.”

Nicole Ferguson⁹: “I’m doing Robin’s Road to Learn React course this weekend & I almost feel
guilty for having so much fun.”

Karan¹⁰: “Just finished your Road to React. Best book for a beginner in the world of React and JS.
Elegant exposure to ES. Kudos! :)”

Eric Priou¹¹: “The Road to learn React by RobinWieruch is a must read. Clean and concise for React
and JavaScript.”

²https://roadtoreact.com/
³https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
⁴https://www.amazon.com/dp/B077HJFCQX
⁵https://twitter.com/appsdevpk/status/848625244956901376
⁶https://twitter.com/andrevar66/status/853789166987038720
⁷https://twitter.com/nhuntwalker/status/845730837823840256
⁸https://twitter.com/AustinGreen/status/845321540627521536
⁹https://twitter.com/nicoleffe/status/833488391148822528
¹⁰https://twitter.com/kvss1992/status/889197346344493056
¹¹https://twitter.com/erixtekila/status/840875459730657283

https://roadtoreact.com/
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.amazon.com/dp/B077HJFCQX
https://twitter.com/appsdevpk/status/848625244956901376
https://twitter.com/andrevar66/status/853789166987038720
https://twitter.com/nhuntwalker/status/845730837823840256
https://twitter.com/AustinGreen/status/845321540627521536
https://twitter.com/nicoleffe/status/833488391148822528
https://twitter.com/kvss1992/status/889197346344493056
https://twitter.com/erixtekila/status/840875459730657283
https://roadtoreact.com/
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.amazon.com/dp/B077HJFCQX
https://twitter.com/appsdevpk/status/848625244956901376
https://twitter.com/andrevar66/status/853789166987038720
https://twitter.com/nhuntwalker/status/845730837823840256
https://twitter.com/AustinGreen/status/845321540627521536
https://twitter.com/nicoleffe/status/833488391148822528
https://twitter.com/kvss1992/status/889197346344493056
https://twitter.com/erixtekila/status/840875459730657283

Education for Children
The book should enable everyone to learn React. However, not everyone has access to the required
resources, because not everyone is educated in the English language. I want to use this project to
support other projects that teach children English in the developing world.

• April to 18. April, 2017, Giving Back, By Learning React¹²

¹²https://www.robinwieruch.de/giving-back-by-learning-react/

https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/giving-back-by-learning-react/

FAQ
How to get updates? I have two channels where I share updates aboutmy content. You can subscribe
to updates by email¹³ or follow me on Twitter¹⁴. Regardless of the channel, my objective is to only
share quality content. Once you receive notification the book has changed, you can download a new
version of it.

Does it use the recent React version? The book always receives an update when the React version
is updated. Programming books are usually outdated soon after their release, but since this book is
self-published, I can update it as needed.

Does it cover Redux? It doesn’t, so I have written a second book. The Road to learn React should
give you a solid foundation before you dive into advanced topics. The implementation of the sample
application in the book will show that you don’t need Redux to build an application in React. After
you have read the book, you should be able to implement a solid application without Redux. Then
you can read my second book, Taming the State in React, to learn Redux.

Does it use JavaScript ES6? Yes. Don’t worry, though, you will be fine if you are familiar with
JavaScript ES5. All JavaScript ES6 features, that I describe in The Journey to Learn React, will
transition from ES5 to ES6. The book does not only teach React, but also all useful JavaScript ES6
features.

How to get access to the source code projects and screencasts series? If you bought one of the
extended packages that grant access to the source code projects, screencast series or any other add-
on, you should find these on your course dashboard¹⁵. If you bought the course other than the official
Road to React¹⁶ course platform, create an account on the platform, and then go to the Admin page
and contact me with one of the email templates. After that I can enroll you in the course. If you
haven’t bought one of the extended packages, you can reach out any time to upgrade your content
to access the source code projects and screencast series.

Can I get a copy of the book if I bought it on Amazon? If you have bought the book on Amazon,
you may have seen that the book is available on my website too. Since I use Amazon as one way to
monetize my often free content, I honestly thank you for your support and invite you to sign up on
Road to React¹⁷. There you can write me an email (Admin page) about your purchase, so that I can
unlock the whole course package for you. In addition, you can always download the latest ebook
version of the book on the platform.

How can I get help while reading the book? The book has a Slack Group¹⁸ for people who are
reading along. You can join the channel to get help, or to help others, as helping others may help

¹³https://www.getrevue.co/profile/rwieruch
¹⁴https://twitter.com/rwieruch
¹⁵https://roadtoreact.com/my-courses
¹⁶https://roadtoreact.com
¹⁷https://roadtoreact.com
¹⁸https://slack-the-road-to-learn-react.wieruch.com/

https://www.getrevue.co/profile/rwieruch
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://roadtoreact.com/my-courses
https://roadtoreact.com/
https://roadtoreact.com/
https://roadtoreact.com/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://roadtoreact.com/my-courses
https://roadtoreact.com/
https://roadtoreact.com/
https://slack-the-road-to-learn-react.wieruch.com/

FAQ vi

you internalize your own understanding. If there is no one available to help you, you can always
reach out to me.

Is there any troubleshoot area? If you run into problems, please join the Slack Group. Also, check
the open issues on GitHub¹⁹ to see if any solutions are listed for specific issue. If your problemwasn’t
mentioned, open a new issue where you can explain your problem, provide a screenshot, and offer
more details (e.g. book page, node version).

Can I help to improve the content? Yes, I love to hear feedback. Simply open an issue on GitHub²⁰.
These can be technical improvements, or clarification on the discussed topics. I am not a native
speaker, so any feedback is appreciated. You can open pull requests on the GitHub page as well.

Is there a money back guarantee? Yes, there is 100% money back guarantee for two months if you
don’t think it’s a good fit. Please reach out to me to get a refund.

How to support the project? If you believe in the content I create, you can support me²¹. It also
helps if you spread the word about this book, or you can sign on as my Patron on Patreon²².

What’s your motivation behind the book? I want to teach about this topic consistently. I often
find materials online that don’t receive update, or only applies to a small part of a topic. Sometimes
people struggle to find consistent and up-to-date resources to learn from. I want to provide this
consistent and up-to-date learning experience. Also, I hope I can support the less fortunate with my
projects by giving them the content for free or by having other impacts²³. Recently I’v found myself
fulfilled when teaching others about programming, as it’s a meaningful activity I prefer over any 9
to 5 job at any company. I hope to continue this path in the future.

Is there a call to action? Yes. I want you to take a moment to think about a person who would be a
good match to learn React. The person could have shown the interest already, could be in the middle
of learning React or might not yet be aware about wanting to learn React. Reach out to that person
and share the book. It would mean a lot to me. The book is intended to be given to others.

¹⁹https://github.com/rwieruch/the-road-to-learn-react/issues
²⁰https://github.com/rwieruch/the-road-to-learn-react
²¹https://www.robinwieruch.de/about/
²²https://www.patreon.com/rwieruch
²³https://www.robinwieruch.de/giving-back-by-learning-react/

https://github.com/rwieruch/the-road-to-learn-react/issues
https://github.com/rwieruch/the-road-to-learn-react
https://www.robinwieruch.de/about/
https://www.patreon.com/rwieruch
https://www.robinwieruch.de/giving-back-by-learning-react/
https://github.com/rwieruch/the-road-to-learn-react/issues
https://github.com/rwieruch/the-road-to-learn-react
https://www.robinwieruch.de/about/
https://www.patreon.com/rwieruch
https://www.robinwieruch.de/giving-back-by-learning-react/

Change Log
10. January 2017:

• v2 Pull Request²⁴
• even more beginner friendly
• 37% more content
• 30% improved content
• 13 improved and new chapters
• 140 pages of learning material
• + interactive course of the book on educative.io²⁵

08. March 2017:

• v3 Pull Request²⁶
• 20% more content
• 25% improved content
• 9 new chapters
• 170 pages of learning material

15. April 2017:

• upgrade to React 15.5

5. July 2017:

• upgrade to node 8.1.3
• upgrade to npm 5.0.4
• upgrade to create-react-app 1.3.3

17. October 2017:

• upgrade to node 8.3.0
• upgrade to npm 5.5.1
• upgrade to create-react-app 1.4.1

²⁴https://github.com/rwieruch/the-road-to-learn-react/pull/18
²⁵https://www.educative.io/collection/5740745361195008/5676830073815040
²⁶https://github.com/rwieruch/the-road-to-learn-react/pull/34

https://github.com/rwieruch/the-road-to-learn-react/pull/18
https://www.educative.io/collection/5740745361195008/5676830073815040
https://github.com/rwieruch/the-road-to-learn-react/pull/34
https://github.com/rwieruch/the-road-to-learn-react/pull/18
https://www.educative.io/collection/5740745361195008/5676830073815040
https://github.com/rwieruch/the-road-to-learn-react/pull/34

Change Log viii

• upgrade to React 16
• v4 Pull Request²⁷
• 15% more content
• 15% improved content
• 3 new chapters (Bindings, Event Handlers, Error Handling)
• 190+ pages of learning material
• +9 Source Code Projects²⁸

17. February 2018:

• upgrade to node 8.9.4
• upgrade to npm 5.6.0
• upgrade to create-react-app 1.5.1
• v5 Pull Request²⁹
• more learning paths
• extra reading material
• 1 new chapter (Axios instead of Fetch)

31. August 2018:

• professional proofreading and editing by Emmanuel Stalling
• 16 Source Code Projects³⁰
• v6 Pull Request³¹

3. October 2018:

• upgrade to node 10.11.0
• upgrade to npm 6.4.1
• upgrade to create-react-app 2.0.2

²⁷https://github.com/rwieruch/the-road-to-learn-react/pull/72
²⁸https://roadtoreact.com
²⁹https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/105
³⁰https://roadtoreact.com
³¹https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/172

https://github.com/rwieruch/the-road-to-learn-react/pull/72
https://roadtoreact.com/
https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/105
https://roadtoreact.com/
https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/172
https://github.com/rwieruch/the-road-to-learn-react/pull/72
https://roadtoreact.com/
https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/105
https://roadtoreact.com/
https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/172

Challenge
Personally I write a lot about my learnings. That’s how I got where I am right now. You are teaching
a topic at its best when you have just learned about it yourself. Since teaching helped me a lot
in my career, I want you to experience the same effects of it. But first you have to do the cause:
teaching yourself. My challenge for the book is the following: teach others what you are learning
while reading the book. A couple of breakpoints on how you could achieve it:

• Write a blog post about a specific topic from the book. It’s not about copying and pasting the
material but rather about teaching the topic your own way. Find your own words to explain
something, grab a problem and solve it, and dive even more into the topic by understanding
every detail about it. Then teach it to others in this one article. You will see how it fills your
knowledge gaps, because you have to dig deeper into the topic, and how it opens doors for
your career in the long term.

• If you are active on social media, grab a couple of things you have learned while reading the
book and share them with your friends. For instance, you can tweet a hot tip on Twitter about
your last learning from the book which may be interesting for others too. Just take a screenshot
of the passage of the book or even better: write about it in your own words. That’s how you
can get into teaching without investing much time.

• If you feel confident recording your learning adventure, share your way through the book on
Facebook Live, YouTube Live or Twitch. It helps you to stay concentrated and work your way
through the book. Even though you don’t have many people following your live session, you
can always use the video to put it on YouTube afterward. Besides it is a great way to verbalize
your problems and how you are going to solve them.

I would love to see people doing especially the last breakpoint: record yourself while reading this
book, implementing the application(s), and conducting the exercises, and put the final version on
YouTube. If parts in between of the recording are taking longer, just cut the video or use a timelapse
effect for them. If you get stuck and need to fix a bug, don’t leave it out but rather include these
passages in the video, because they are so valuable for your audience which may run into the same
issues. I believe it is important to have these parts in your video. A couple of tipps for the video:

• Do it in your native language or in English if you feel comfortable with it.
• Verbalize your thoughts, the things you are doing or the problems you are running into. Having
a visual video is only one part of the challenge, but the other part is you narrating through the
implementation. It doesn’t have to be perfect. Instead it should feel natural and not polished
as all the other video courses online where nobody runs into problems.

Challenge x

• If you run into bugs, embrace the trouble. Try to fix the problem yourself and search online for
help, don’t give up, and speak about the problem and how you attempt to solve it. This helps
others to follow your thought process. As I said before, it has no value to follow polished video
courses online where the instructor never runs into problems. It’s the most valuable part to see
someone else fixing a bug in the source code.

• Some words about the technical side of the recording: Check your audio before you record a
longer video. It should have the correct volume and the quality should be alright too. Regarding
your editor/IDE/terminal, make sure to increase the font size. Maybe it is possible to place the
code and the browser side by side. If not, make them fullscreen and switch between (e.g. MacOS
CMD + Tab).

• Edit the video yourself before you put it on YouTube. It doesn’t have to be a high quality, but
you should try to keep it concise for your audience (e.g. leaving out the reading passages and
rather summarize the steps in your own words).

In the end, you can reach out to me for promoting anything you have released. For instance, if the
video turns out well, I would love to include it in this book as officially supplementary material.
Just reach out to me once you finished it. After all, I hope you accept this challenge to enhance your
learning experience while reading the book which also may help others. I wish you all the best for
it.

Introduction to React
This chapter is an introduction to React, a JavaScript library for rendering interfaces in single-page
and mobile applications, where I explain why developers should consider adding the React library
to their toolbelts. We will dive into the React ecosystem, creating your first React application from
scratch with no configuration. Along the way, we will introduce JSX, the syntax for React, and
ReactDOM, so you have an understanding of React’s practical uses in modern web applications.

Introduction to React 2

Hi, my name is React.

Single page applications (SPA³²) have become increasingly popular in recent years, as frameworks
like Angular, Ember, and Backbone allow JavaScript developers to build modern web applications
using techniques beyond vanilla JavaScript and jQuery. The three mentioned are among the first
SPAs, each coming into its own between 2010 and 2011, but there are many more options for single-
page development. The first generation of SPA frameworks arrived at the enterprise level, so their
frameworks are more rigid. React, on the other hand, remains an innovative library that has been
adopted by many technological leaders like Airbnb, Netflix, and Facebook³³.

React was released by Facebook’s web development team in 2013 as a view library, which makes
it the ‘V’ in the MVC³⁴ (model view controller). As a view, it allows you to render components as
viewable elements in a browser, while its ecosystem lets us build single page applications. While the
first generation of frameworks tried to solve many things at once, React is only used to build your
view layer; specifically, it is a library wherein the view is a hierarchy of composable components.
If you haven’t heard about MVC before, don’t bother about it, because it’s just there to put React
historically into context for people who come from other programming languages.

In React, the focus remains on the view layer until more aspects are introduced to the application.
These are the building blocks for an SPA, which are essential to build a mature application. They
come with two advantages:

• You can learn the building blocks one at a time without having to understand them altogether.
In contrast, an SPA framework gives you every building block from the start. This book focuses
on React as the first building block. More building blocks will eventually follow.

• All building blocks are interchangeable, which makes the ecosystem around React highly
innovative. Multiple solutions can compete with each other, and you can choose the most
appealing solution for any given challenge.

React is one of the best choices for buildingmodernweb applications. Again, it only delivers the view
layer, but the surrounding ecosystem makes up an entirely flexible and interchangeable framework.
React has a slim API, a robust and evolving ecosystem, and a great community.

Exercises

If you’d like to know more about why I chose React, or to find a more in-depth look at the topics
mentioned above, these articles grant a deeper perspective:

• Why I moved from Angular to React³⁵

³²https://en.wikipedia.org/wiki/Single-page_application
³³https://github.com/facebook/react/wiki/Sites-Using-React
³⁴https://en.wikipedia.org/wiki/Modelâ€“viewâ€“controller
³⁵https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

https://en.wikipedia.org/wiki/Single-page_application
https://github.com/facebook/react/wiki/Sites-Using-React
https://en.wikipedia.org/wiki/Model%C3%A2%E2%82%AC%E2%80%9Cview%C3%A2%E2%82%AC%E2%80%9Ccontroller
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://en.wikipedia.org/wiki/Single-page_application
https://github.com/facebook/react/wiki/Sites-Using-React
https://en.wikipedia.org/wiki/Model%C3%A2%E2%82%AC%E2%80%9Cview%C3%A2%E2%82%AC%E2%80%9Ccontroller
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

Introduction to React 3

• React’s flexible ecosystem³⁶
• How to learn a framework³⁷

³⁶https://www.robinwieruch.de/essential-react-libraries-framework/
³⁷https://www.robinwieruch.de/how-to-learn-framework/

https://www.robinwieruch.de/essential-react-libraries-framework/
https://www.robinwieruch.de/how-to-learn-framework/
https://www.robinwieruch.de/essential-react-libraries-framework/
https://www.robinwieruch.de/how-to-learn-framework/

Introduction to React 4

Requirements

To follow this book, you should be familiar with the basics of web development, i.e how to use
HTML, CSS, and JavaScript. It also makes sense to understand how APIs³⁸ work, as they will be
covered thoroughly. Also, I encourage you to join the official Slack Group³⁹ to be a part of a growing
React community where you can learn from and help others.

Editor and Terminal

For the lessons, you will need a text editor or an IDE and terminal (command line tool). I have
provided a setup guide⁴⁰ if you need additional help. Optionally, we recommend you keep your
projects in GitHub while conducting the exercises in this book. There is a short guide⁴¹ on how to
use these tools. Github has excellent version control, so you can see what changes were made if you
make a mistake or just want a more direct way to follow along.

Node and NPM

Finally, you will need an installation of node and npm⁴². Both are used to manage libraries you will
need along the way. In this book, you will install external node packages via npm (node package
manager). These node packages can be libraries or whole frameworks.

You can verify your versions of node and npm on the command line. If you don’t get any output in
the terminal, you need to install node and npm first. These are my versions at the time of writing
this book:

Command Line

node --version

*v10.11.0

npm --version

*v6.4.1

The additional content of this section is a crash course in node and npm. It is not exhaustive, but it
will cover all of the necessary tools. If you are familiar with both of them, you can skip this section.

The node package manager (npm) installs external node packages from the command line.
These packages can be a set of utility functions, libraries, or whole frameworks, and they are the
dependencies of your application. You can either install these packages to your global node package
folder, or to your local project folder.

Global node packages are accessible from everywhere in the terminal, and only need to be installed
to the global directory once. Install a global package by typing the following into a terminal:

³⁸https://www.robinwieruch.de/what-is-an-api-javascript/
³⁹https://slack-the-road-to-learn-react.wieruch.com/
⁴⁰https://www.robinwieruch.de/developer-setup/
⁴¹https://www.robinwieruch.de/git-essential-commands/
⁴²https://nodejs.org/en/

https://www.robinwieruch.de/what-is-an-api-javascript/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/
https://www.robinwieruch.de/what-is-an-api-javascript/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/

Introduction to React 5

Command Line

npm install -g <package>

The -g flag tells npm to install the package globally. Local packages are used in your application by
default. For our purposes, we will install React to the local directory terminal by typing:

Command Line

npm install react

The installed package will automatically appear in a folder called node_modules/ and will be listed
in the package.json file next to your other dependencies.

To initialize the node_modules/ folder and the package.json file for your project, use the following
npm command. Then, you can install new local packages via npm:

Command Line

npm init -y

The -y flag initializes all the defaults in your package.json. After initializing your npm project, you
are ready to install new packages via npm install <package>.

The package.json file allows you to share your project with other developers without sharing all
the node packages. It will contain references to all node packages used in your project, called
dependencies. Other users can copy a project without the dependencies using the references in
package.json, where the references make it easy to install all packages using npm install. A npm

install script will take all the dependencies listed in the package.json file and install them in the
node_modules/ folder.

Finally, there’s one more command to cover about npm:

Command Line

npm install --save-dev <package>

The --save-dev flag indicates that the node package is only used in the development environment,
meaning it won’t be used in when the application is deployed to a the server or used in production. It
is useful for testing an application using a node package, but want to exclude it from your production
environment.

Some of you may want to use other package managers to work with node packages in your
applications. Yarn is a dependency manager that works similar to npm. It has its own list of
commands, but you still have access to the same npm registry. Yarn was created to solve issues
npm couldn’t, but both tools have evolved to the point where either will suffice today.

Introduction to React 6

Exercises:

• Set up a throw away npm project using the terminal:
– Create a new folder with mkdir <folder_name>

– Navigate into the folder with cd <folder_name>

– Execute npm init -y or npm init

– Install a local package like React with npm install react

– Check the package.json file and the node_modules/ folder
– Attempt to uninstall and reinstall the react node package

• Read about npm⁴³
• Read about yarn⁴⁴ package manager

⁴³https://docs.npmjs.com/
⁴⁴https://yarnpkg.com/en/docs/

https://docs.npmjs.com/
https://yarnpkg.com/en/docs/
https://docs.npmjs.com/
https://yarnpkg.com/en/docs/

Introduction to React 7

Installation

There are many approaches to getting started with a React application. The first we’ll explore is a
CDN, short for content delivery network⁴⁵. Don’t worry too much about CDNs now, because you
will not use them in this book, but it makes sense to explain them briefly. Many companies use
CDNs to host files publicly for their consumers. Some of these files are libraries like React, since the
bundled React library is just a react.js JavaScript file.

To get started with React by using a CDN, find the <script> tag in your web page HTML that points
to a CDN url. You will need two libraries: react and react-dom.

Code Playground

<script

crossorigin

src="https://unpkg.com/react@16/umd/react.development.js"

></script>

<script

crossorigin

src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"

></script>

You can also get React into your application by initializing it as node project.With a package.json file,
you can install react and react-dom from the command line. However, the folder must be initialized
as a npm project using npm init -y with a package.json file. You can install multiple node packages
with npm:

Command Line

npm install react react-dom

This approach is often used to add React to an existing application managed with npm.

You may also have to deal with Babel⁴⁶ to make your application aware of JSX (the React syntax)
and JavaScript ES6. Babel transpiles your code–that is, it converts it to vanilla JavaScript–so most
modern browsers can interpret JavaScript ES6 and JSX. Because of this difficult setup, Facebook
introduced create-react-app as a zero-configuration React solution. The next section will show you
how to setup your application using this bootstrapping tool.

Exercises:

• Read about React installations⁴⁷

⁴⁵https://en.wikipedia.org/wiki/Content_delivery_network
⁴⁶http://babeljs.io/
⁴⁷https://reactjs.org/docs/getting-started.html

https://en.wikipedia.org/wiki/Content_delivery_network
http://babeljs.io/
https://reactjs.org/docs/getting-started.html
https://en.wikipedia.org/wiki/Content_delivery_network
http://babeljs.io/
https://reactjs.org/docs/getting-started.html

Introduction to React 8

Zero-Configuration Setup

In the Road to learn React, we will be using create-react-app⁴⁸ to bootstrap your application. It’s
an opinionated yet zero-configuration starter kit for React introduced by Facebook in 2016, recom-
mended for beginners by 96% of React users⁴⁹. In create-react-app the tooling and configuration
evolve in the background, while the focus is on the application implementation.

To get started, install the package to your global node packages, which keeps it available on the
command line to bootstrap new React applications:

Command Line

npm install -g create-react-app

You can check the version of create-react-app to verify a successful installation on your command
line:

Command Line

create-react-app --version

*v2.0.2

Now you are ready to bootstrap your first React application. The example will be referred to as
hackernews, but you may choose any name you like. First, navigate into the folder:

Command Line

create-react-app hackernews

cd hackernews

Now you can open the application in your editor. The following folder structure, or a variation of it
depending on the create-react-app version, should be presented to you:

Folder Structure

hackernews/

README.md

node_modules/

package.json

.gitignore

public/

favicon.ico

index.html

manifest.json

⁴⁸https://github.com/facebookincubator/create-react-app
⁴⁹https://twitter.com/dan_abramov/status/806985854099062785

https://github.com/facebookincubator/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785
https://twitter.com/dan_abramov/status/806985854099062785
https://github.com/facebookincubator/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785

Introduction to React 9

src/

App.css

App.js

App.test.js

index.css

index.js

logo.svg

serviceWorker.js

This is a breakdown of the folders and files:

• README.md: The .md extension indicates the file is a markdown file. Markdown is used
as a lightweight markup language with plain text formatting syntax. Many source code
projects come with a README.md file to give you initial instructions about the project. When
pushing your project to a platform such as GitHub, the README.md file usually displays
information about the content contained in the repository. Because you used create-react-app,
your README.md should be the same as the official create-react-app GitHub repository⁵⁰.

• node_modules/: This folder contains all node packages that have been installed via npm. Since
you used create-react-app, there should already be a couple of node modules installed for you.
You will rarely touch this folder, because node packages are generally installed and uninstalled
with npm from the command line.

• package.json: This file shows you a list of node package dependencies and other project
configurations.

• .gitignore: This file displays all files and folders that shouldn’t be added to your git repository
when using git; such files and folders should only be located in your local project. The node_-
modules/ folder is one example. It is enough to share the package.json file with others, so they
can install dependencies on their end with npm install without your dependency folder.

• public/: This folder holds development files, such as public/index.html. The index is displayed
on localhost:3000 when developing your app. The boilerplate takes care of relating this index
with all the scripts in src/.

• build/ This folder is created when you build the project for production, as it holds all of the
production files. When building your project for production, all the source code in the src/ and
public/ folders are bundled and placed in the build folder.

• manifest.json and serviceWorker.js: These files won’t be used for this project, so you can
ignore them for now.

In the beginning, everything you need is located in the src/ folder. The main focus lies on the
src/App.js file which is used to implement React components. It will be used to implement your
application, but later you might want to split up your components into multiple files, where each
file maintains one or more components on its own.

⁵⁰https://github.com/facebookincubator/create-react-app

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

Introduction to React 10

Additionally, you will find a src/App.test.js file for your tests, and a src/index.js as an entry point
to the React world. You will get to know both files intimately in a later chapter. There is also a
src/index.css and a src/App.css file to style your general application and components, which comes
with the default style when you open them. You will modify them later as well.

The create-react-app application is a npm project you can use to install and uninstall node packages.
It comes with the following npm scripts for your command line:

Command Line

Runs the application in http://localhost:3000

npm start

Runs the tests

npm test

Builds the application for production

npm run build

The scripts are defined in your package.json, and your basic React application is bootstrapped. The
following exercises will finally allow you to run your bootstrapped application in a browser.

Exercises:

• npm start your application and visit the application in your browser (Exit the command by
pressing Control + C)

• Run the npm test script
• Run the npm run build script and verify that a build/ folder was added to your project (you can
remove it afterward. Note that the build folder can be used later on to deploy your application⁵¹)

• Familiarize yourself with the folder structure
• Check the content of the files
• Read about npm scripts and create-react-app⁵²

⁵¹https://www.robinwieruch.de/deploy-applications-digital-ocean/
⁵²https://github.com/facebookincubator/create-react-app

https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://github.com/facebookincubator/create-react-app
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://github.com/facebookincubator/create-react-app

Introduction to React 11

Introduction to JSX

Nowwewill get to know JSX, the syntax in React. Asmentioned before, create-react-app has already
bootstrapped a basic application for you, and all files come with their own default implementations.
For now, the only file we will modify is the src/App.js file.

src/App.js

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<header className="App-header">

<p>

Edit <code>src/App.js</code> and save to reload.

</p>

<a

className="App-link"

href="https://reactjs.org"

target="_blank"

rel="noopener noreferrer"

>

Learn React

</header>

</div>

);

}

}

export default App;

Don’t worry if you’re confused by the import/export statements and class declaration now. These
are features of JavaScript ES6 we will revisit in a later chapter.

In the file you should see a React ES6 class component with the name App. This is a component
declaration. After you have declared a component, you can use it as an element anywhere in your
application. It will produce an instance of your component or, in other words, the component gets
instantiated.

Introduction to React 12

Code Playground

// component declaration

class App extends Component {

...

}

// component usage (also called instantiation for a class)

// creates an instance of the component

<App />

The returned element is specified in the render()method. The components you instantiated earlier
are made up of elements, so it is important to understand the differences between a component, an
instance of a component, and an element.

You should see where the App component is instantiated, else you couldn’t see the rendered output
in a browser. The App component is only the declaration, but not the usage. You can instantiate
the component anywhere in your JSX with <App />. You will see later where this happens in this
application.

The content in the render block may look similar to HTML, but it is actually JSX. JSX allows you to
mix HTML and JavaScript. It is powerful, but it can be confusing when you are used to separating
the two languages. It is a good idea to start by using basic HTML in your JSX. Open the App.js file
and remove all unnecessary HTML code as shown:

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<h2>Welcome to the Road to learn React</h2>

</div>

);

}

}

export default App;

Now, you only return HTML in your render() method without any JavaScript. Let’s define the
“Welcome to the Road to learn React” as a variable. A variable is set in JSX by curly braces.

Introduction to React 13

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

var helloWorld = 'Welcome to the Road to learn React';

return (

<div className="App">

<h2>{helloWorld}</h2>

</div>

);

}

}

export default App;

Start your application on the command line with npm start to verify the changes you’ve made.

You might have noticed the className attribute. It reflects the standard class attribute in HTML.
JSX had replaced a handful of internal HTML attributes, but you can find all the supported HTML
attributes in React’s documentation⁵³, which all follow the camelCase convention. On your way to
learn React, expect to run across more JSX specific attributes.

Exercises:

• Define more variables and render them in JSX
– Use a complex object to represent a user with a first name and last name
– Render the user properties in JSX

• Read about JSX⁵⁴
• Read about React components, elements and instances⁵⁵

⁵³https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
⁵⁴https://reactjs.org/docs/introducing-jsx.html
⁵⁵https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html
https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

Introduction to React 14

ES6 const and let

Notice that we declared the variable helloWorld with a var statement. JavaScript ES6 comes with
two more ways to declare variables: const and let. In JavaScript ES6, you will rarely find var

anymore. A variable declared with const cannot be re-assigned or re-declared, and cannot be
changed or modified. Once the variable is assigned, you cannot change it:

Code Playground

// not allowed

const helloWorld = 'Welcome to the Road to learn React';

helloWorld = 'Bye Bye React';

Conversely, a variable declared with let can be modified:

Code Playground

// allowed

let helloWorld = 'Welcome to the Road to learn React';

helloWorld = 'Bye Bye React';

TIP: Declare variables with let if you think you’ll want to re-assign it later on.

Note that a variable declared directly with const cannot be modified. However, when the variable
is an array or object, the values it holds can get updated through indirect means:

Code Playground

// allowed

const helloWorld = {

text: 'Welcome to the Road to learn React'

};

helloWorld.text = 'Bye Bye React';

There are varying opinions about when to use const and when to use let. I would recommend using
const whenever possible to show the intent of keeping your data structures immutable, so you only
have to worry about the values contained in objects and arrays. Immutability is embraced in the
React ecosystem, so const should be your default choice when you define a variable, though it’s
not really about immutability, but about assigning variables only once. It shows the intent of not
changing (re-assigning) the variable even though its content can be changed.

Introduction to React 15

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

const helloWorld = 'Welcome to the Road to learn React';

return (

<div className="App">

<h2>{helloWorld}</h2>

</div>

);

}

}

export default App;

In your application, we will use const and let over var for the rest of the book.

Exercises:

• Read about ES6 const⁵⁶
• Read about ES6 let⁵⁷
• Gain an understanding of immutable data structures:

– Why do they make sense in programming?
– Why are they embraced in React and its ecosystem?

⁵⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
⁵⁷https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

Introduction to React 16

ReactDOM

The App component is located in your entry point to the React world: the src/index.js file.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

import './index.css';

ReactDOM.render(

<App />,

document.getElementById('root')

);

ReactDOM.render() uses a DOM node in your HTML to replace it with JSX. It’s a way to integrate
React in any foreign application easily, and you can use ReactDOM.render() multiple times across
your application. You can use it to bootstrap simple JSX syntax, a React component, multiple React
components, or an entire application. In a plain React application, you would only use it once to
bootstrap the component tree.

ReactDOM.render() expects two arguments. The first argument is for rendering the JSX. The second
argument specifies the place where the React application hooks into your HTML. It expects an
element with an id='root', found in the public/index.html file.

Code Playground

ReactDOM.render(

<h1>Hello React World</h1>,

document.getElementById('root')

);

During implementation, ReactDOM.render() takes your App component, though it can also pass
simple JSX. It doesn’t require an component instance.

Exercises:

• Open the public/index.html to see where the React application hooks into your HTML
• Read about rendering elements in React⁵⁸

⁵⁸https://reactjs.org/docs/rendering-elements.html

https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/rendering-elements.html

Introduction to React 17

Hot Module Replacement

Hot Module Replacement can be used in the src/index.js file to improve your experience as a
developer. By default, create-react-appwill cause the browser to refresh the pagewhenever its source
code is modified. Try it by changing the helloWorld variable in your src/App.js file, which should
cause the browser to refresh the page. There is a better way of handling source code changes during
development, however.

Hot Module Replacement (HMR) is a tool for reloading your application in the browser without the
page refresh. You can activate it in create-react-app by adding the following configuration to your
src/index.js file:

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

ReactDOM.render(

<App />,

document.getElementById('root')

);

if (module.hot) {

module.hot.accept();

}

Again, change the helloWorld variable in your src/App.js file. The browser shouldn’t refresh, but
the application will reload and show the correct output. HMR comes with multiple advantages:

Imagine you are debugging your code with console.log() statements. These statements will stay
in your developer console, even though you changed your code, because the browser doesn’t refresh
the page anymore. In a growing application, page refreshes delay productivity; HMR removes this
obstacle by eliminating the incremental time loss it takes for a browser to reload.

The most useful benefit of HMR is that you can keep the application state after the application
reloads. For instance, assume you have a dialog or wizard in your application with multiple steps,
and you are on step 3. Without HMR, you make changes to the source code and your browser
refreshes the page. You would then have to open the dialog again and navigate from step 1 to step
3 each time. With HMR your dialog stays open at step 3, so you can debug from the exact point
you’re working on. With the time saved from page loads, this makes HMR an invaluable tool for
React developers.

Introduction to React 18

Exercises:

• Change your src/App.js source code a few times to see HMR in action
• Watch the first 10 minutes of Live React: Hot Reloading with Time Travel⁵⁹ by Dan Abramov

⁵⁹https://www.youtube.com/watch?v=xsSnOQynTHs

https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs

Introduction to React 19

Complex JavaScript in JSX

So far, you have rendered a few primitive variables in your JSX. Now, we will render a list of items.
The list will contain sample data in the beginning, but later we will learn how to fetch the data from
an external API.

First you have to define the list of items:

src/App.js

import React, { Component } from 'react';

import './App.css';

const list = [

{

title: 'React',

url: 'https://reactjs.org/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

class App extends Component {

...

}

The sample data represents information we will fetch from an API later on. Items in this list each
have a title, a url, and an author, as well an identifier, points (which indicate how popular an article
is), and a count of comments.

Now you can use the built-in JavaScript map functionality⁶⁰ in JSX, which iterates over a list of
items to display them according to specific attributes. Again, we use curly braces to encapsulate the
JavaScript expression in JSX:

⁶⁰https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Introduction to React 20

src/App.js

class App extends Component {

render() {

return (

<div className="App">

{list.map(function(item) {

return <div>{item.title}</div>;

})}

</div>

);

}

}

export default App;

Using JavaScript alongside HTML in JSX is very powerful. For a different task you may have used
map to convert one list of items to another. This time, we used map to convert a list of items to HTML
elements.

Code Playground

const array = [1, 4, 9, 16];

// pass a function to map

const newArray = array.map(function (x) { return x * 2; });

console.log(newArray);

// expected output: Array [2, 8, 18, 32]

So far, only the title is displayed for each item. Let’s experiment with more of the item’s properties:

src/App.js

class App extends Component {

render() {

return (

<div className="App">

{list.map(function(item) {

return (

<div>

{item.title}

Introduction to React 21

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

</div>

);

}

}

export default App;

Note how the map function is inlined in your JSX. Each item property is displayed with a tag,
and the url property of the item is in the href attribute of the anchor tag.

React will display each item, but you can still do more to help React embrace its full potential.
By assigning a key attribute to each list element, React can identify modified items when the list
changes. These sample list items come with an identifier:

src/App.js

{list.map(function(item) {

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

Make sure that the key attribute is a stable identifier. Avoid using the index of the item in the array,
because the array index is not stable. If the list changes its order, for example, React will not be able
to identify the items properly.

Introduction to React 22

src/App.js

// don't do this

{list.map(function(item, key) {

return (

<div key={key}>

...

</div>

);

})}

Start your app in a browser, and you should see both items of the list displayed.

Exercises:

• Read about React lists and keys⁶¹
• Recap the standard built-in array functionalities in JavaScript⁶²
• Use more JavaScript expressions on your own in JSX

⁶¹https://reactjs.org/docs/lists-and-keys.html
⁶²https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/

https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/
https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/

Introduction to React 23

ES6 Arrow Functions

JavaScript ES6 introduced arrow functions expressions, which are shorter than a function expres-
sions.

Code Playground

// function declaration

function () { ... }

// arrow function declaration

() => { ... }

You can remove the parentheses in an arrow function expression if it only has one argument, but
you have to keep the parentheses if it gets multiple arguments:

Code Playground

// allowed

item => { ... }

// allowed

(item) => { ... }

// not allowed

item, key => { ... }

// allowed

(item, key) => { ... }

You can also write map functions more concisely with an ES6 arrow function:

src/App.js

{list.map(item => {

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

Introduction to React 24

);

})}

You can remove the block body, the curly braces, with the ES6 arrow function. In a concise body, an
implicit return is attached; thus, you can remove the return statement. This will happen often in
this book, so be sure to understand the difference between a block body and a concise body when
using arrow functions.

src/App.js

{list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

)}

Your JSX should look more concise and readable now, as it omits the function statement, the curly
braces, and the return statement.

Exercises:

• Read about ES6 arrow functions⁶³

⁶³https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Introduction to React 25

ES6 Classes

JavaScript ES6 introduced classes, which are commonly used in object-oriented programming lan-
guages. JavaScript, always flexible in its programming paradigms, allows functional programming
and object-oriented programming to work side-by-side.

While React embraces functional programming, e.g. immutable data structures and function
compositions, classes are used to declare ES6 class components. React mixes the good parts of both
programming paradigms.

Consider the following Developer class to examine a JavaScript ES6 class without a component.

Code Playground

class Developer {

constructor(firstname, lastname) {

this.firstname = firstname;

this.lastname = lastname;

}

getName() {

return this.firstname + ' ' + this.lastname;

}

}

A class has a constructor to make it instantiable. The constructor takes arguments and assigns them
to the class instance. A class can also define functions. Because the function is associated with a
class, it is called a method, or a class method.

The Developer class is only the class declaration we use here, as you can create multiple instances
of a class by invoking it. It is similar to the ES6 class component, which has a declaration, but you
have to use it somewhere else to instantiate it:

Code Playground

const robin = new Developer('Robin', 'Wieruch');

console.log(robin.getName());

// output: Robin Wieruch

React uses JavaScript ES6 classes for ES6 class components, which you have already used at least
once so far:

Introduction to React 26

src/App.js

import React, { Component } from 'react';

...

class App extends Component {

render() {

...

}

}

When you declare the App component it extends from another component. In object-oriented pro-
gramming, the term “extends” refers to the principle of inheritance, which means that functionality
can be passed from one class to another. The App class extends from the Component class, meaning
it inherits functionality from the Component class. The Component class is used to extend a basic
ES6 class to a ES6 component class. It has all the functionalities that a component in React needs.
The render method is one function you have already used. You will learn about other component
class methods as we move along.

The Component class encapsulates all the implementation details of a React component, which allows
developers to use classes as components in React.

Methods exposed by a React Component are its public interface. One of these methods must be
overridden, while the others don’t need to be overridden. You will learn about these whenwe discuss
lifecycle methods later. The render() method has to be overridden, because it defines the output of
a React Component, so it must be defined. These are the basics of JavaScript ES6 classes, and how
they are used in React to extend them to components.

Exercises:

• Read about JavaScript fundamentals before learning React⁶⁴
• Read about ES6 classes⁶⁵

⁶⁴https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
⁶⁵https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

Introduction to React 27

Congratulations, you have learned to bootstrap your first React application! Let’s recap:

• React
– Create-react-app bootstraps a React application
– JSX mixes up HTML and JavaScript to define the output of React components in their
render methods

– Components, instances, and elements are different items in React
– ReactDOM.render() is an entry point for a React application to hook React into the DOM
– Built-in JavaScript functionalities can be used in JSX
– Map can be used to render a list of items as HTML elements

• ES6
– Variable declarations with const and let can be used for specific use cases
– Use const over let in React applications
– Arrow functions can be used to keep your functions concise
– Classes are used to define components in React by extending them

Now that you’ve completed the first chapter, it’s advisable to experiment with the source code you
have written so far and see what changes you can make on your own. You can find the source code
in the official repository⁶⁶.

⁶⁶https://github.com/the-road-to-learn-react/hackernews-client/tree/5.1

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.1
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.1

Basics in React
This chapter will guide you through the basics of React. It covers state and interactions in
components as we move past static components. We will also cover the different ways to declare a
component, and how to keep components composable and reusable.

Basics in React 29

Local Component State

Local component state, also known as internal component state, allows you to save, modify, and
delete properties stored in your component. The ES6 class component then uses a constructor to
initialize local component state. The constructor is called only once, when the component initializes:

Let’s introduce a class constructor.

src/App.js

class App extends Component {

constructor(props) {

super(props);

}

...

}

The App component is a subclass of Component, so the extends Component is in the App component
declaration.

It is mandatory to call super(props);. It sets this.props in your constructor in case you want
to access them there. They would be undefined when accessing this.props in your constructor
otherwise. In this case, the initial state of the component should be the sample list of items:

src/App.js

const list = [

{

title: 'React',

url: 'https://reactjs.org/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

...

];

class App extends Component {

constructor(props) {

super(props);

Basics in React 30

this.state = {

list: list,

};

}

...

}

The state is bound to the class using the this object, so you can access the local state of the whole
component. For instance, it can be used in the render() method. Previously you have mapped a
static list of items in your render() method that was defined outside of your component. Now you
are about to use the list from your local state in your component.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

)}

</div>

);

}

}

The list is part of the component now, in the local component state. You could add, change, or
remove items from your list. Every time you change your component state, the render()method of
your component will run again. That’s how you can change your local component state and see the
component re-render the correct data from the local state.

Basics in React 31

Be careful not to mutate the state directly. Instead, you should use a method called setState() to
modify your states. We will cover these concepts in more depth next chapter.

Exercises:

• Experiment with the local state
– Define more initial state in the constructor
– Use and access the state in your render() method

• Read about the ES6 class constructor⁶⁷

⁶⁷https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor

Basics in React 32

ES6 Object Initializer

In JavaScript ES6, you can use a shorthand property syntax to initialize your objects more concisely,
like following object initialization:

Code Playground

const name = 'Robin';

const user = {

name: name,

};

When the property name in your object is the same as your variable name, you can do the following:

Code Playground

const name = 'Robin';

const user = {

name,

};

In your application, you can do the same. The list variable name and the state property name share
the same name.

Code Playground

// ES5

this.state = {

list: list,

};

// ES6

this.state = {

list,

};

Shorthand method names are also useful. In JavaScript ES6, you can initialize methods in an object
more concisely:

Basics in React 33

Code Playground

// ES5

var userService = {

getUserName: function (user) {

return user.firstname + ' ' + user.lastname;

},

};

// ES6

const userService = {

getUserName(user) {

return user.firstname + ' ' + user.lastname;

},

};

Finally, you are allowed to use computed property names in JavaScript ES6:

Code Playground

// ES5

var user = {

name: 'Robin',

};

// ES6

const key = 'name';

const user = {

[key]: 'Robin',

};

Later, you will be able to use computed property names to allocate values by key in an object
dynamically, a handy way to generate lookup tables in JavaScript.

Exercises:

• Experiment with ES6 object initializer
• Read about ES6 object initializer⁶⁸

⁶⁸https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer

Basics in React 34

Unidirectional Data Flow

Now you have a local state in your App component, but haven’t manipulated the state yet. The local
state is static, so its component is as well. A good way to experience state manipulation is to engage
in component interaction.

We will practice this concept by adding a button for each item in the displayed list. The button will
read “Dismiss”, as its purpose will be to remove an item from the list. In an email client, for example,
it would be a useful way to mark some list items as ‘read’ while keeping the unread items separate.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

The onDismiss() class method is not defined yet. We will do it in a moment, but for now, let’s
focus on the onClick handler of the button element. As you can see, the onDismiss()method in the

Basics in React 35

onClick handler is enclosed by an arrow function. You can use it to peek at the objectID property
of the item object and identify the item to be dismissed. An alternative way would be to define
the function outside of the onClick handler and only pass the defined function to it. We will cover
handlers more in-depth as we move along.

Note the use of multilines for the button element, and how elements with multiple attributes can get
disorganized easily. The button element is used with multilines and indentations to keep it readable.
While this practice isn’t specific to React development, it is a programming style I recommend for
cleanliness and your own peace of mind.

Now we will implement the onDismiss() functionality. It takes an id to identify the item to dismiss.
The function is bound to the class and thus becomes a class method. That’s why you access it with
this.onDismiss() and not onDismiss(). The this object is your class instance. In order to define
the onDismiss() as class method, you have to bind it in the constructor:

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

render() {

...

}

}

In the next step, we define its functionality, the business logic, in the class:

Basics in React 36

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

onDismiss(id) {

...

}

render() {

...

}

}

Now we can define what happens inside a class method. Remember, the objective is to remove the
item identified by the id from the list and store an updated list to the local state. The updated list
will be used in the re-running render() method to display it, where the removed item should no
longer appear.

You can remove an item from a list using JavaScript’s built-in filter⁶⁹ functionality, which takes a
function as input. The function has access to each value in the list because it iterates over each item,
so you can evaluate them based on certain conditions.

Code Playground

const words = ['spray', 'limit', 'elite', 'exuberant', 'destruction', 'present'];

const filteredWords = words.filter(function (word) { return word.length > 6; });

console.log(filteredWords);

// expected output: Array ["exuberant", "destruction", "present"]

The function returns a new list instead of mutating the old one, and it supports the React convention
of using immutable data structures.

⁶⁹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Basics in React 37

src/App.js

onDismiss(id) {

const updatedList = this.state.list.filter(function isNotId(item) {

return item.objectID !== id;

});

}

In the next step, we extract the function and pass it to the filter function:

src/App.js

onDismiss(id) {

function isNotId(item) {

return item.objectID !== id;

}

const updatedList = this.state.list.filter(isNotId);

}

Remember: You can filter more efficiently using a JavaScript ES6 arrow function.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedList = this.state.list.filter(isNotId);

}

You could even inline it again like you did in the onClick handler of the button, though it might get
less readable:

src/App.js

onDismiss(id) {

const updatedList = this.state.list.filter(item => item.objectID !== id);

}

The list removes the clicked item now, but the state hasn’t updated yet. Use the setState() class
method to update the list in the local component state:

Basics in React 38

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedList = this.state.list.filter(isNotId);

this.setState({ list: updatedList });

}

Run the application again and try the “Dismiss” button. What you experienced is the unidirectional
data flow of React. An action is triggered in the view layer with onClick(), a function or class
method modifies the local component state, and then the render() method of the component runs
again to update the view.

Exercises:

• Read about the state and lifecycle in React⁷⁰

⁷⁰https://reactjs.org/docs/state-and-lifecycle.html

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html

Basics in React 39

Bindings

It is important to learn about bindings in JavaScript classes when using React ES6 class components.
In the previous chapter, you have bound your class method onDismiss() in the constructor.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

...

}

The binding step is necessary because class methods don’t automatically bind this to the class
instance. Let’s demonstrate it with the help of the following ES6 class component:

Code Playground

class ExplainBindingsComponent extends Component {

onClickMe() {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

</button>

);

}

}

Basics in React 40

The component renders just fine, but when you click the button, you see undefined in your developer
console log. This is one of the main sources of bugs developers encounter in React. If you want to
access this.state in your class method, it cannot be retrieved because this is undefined. To make
this accessible in your class methods, you have to bind the class methods to this.

In the following class component the class method is properly bound in the class constructor:

Code Playground

class ExplainBindingsComponent extends Component {

constructor() {

super();

this.onClickMe = this.onClickMe.bind(this);

}

onClickMe() {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

</button>

);

}

}

Class method binding can happen somewhere else too. For instance, it can happen in the render()
class method:

Code Playground

class ExplainBindingsComponent extends Component {

onClickMe() {

console.log(this);

}

render() {

return (

<button

Basics in React 41

onClick={this.onClickMe.bind(this)}

type="button"

>

Click Me

</button>

);

}

}

Avoid this practice, however, because it binds the class method every time the render() method
runs, meaning every time the component updates, which will hurt your application’s performance
eventually. Binding the classmethod in the constructor need only be done once, when the component
is instantiated.

Some developers will define the business logic of their class methods in the constructor:

Code Playground

class ExplainBindingsComponent extends Component {

constructor() {

super();

this.onClickMe = () => {

console.log(this);

}

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

</button>

);

}

}

Avoid this approach as well, as it will clutter your constructor over time. The constructor is only
there to instantiate your class with all its properties, so the business logic of class methods should
be defined outside the constructor.

Basics in React 42

Code Playground

class ExplainBindingsComponent extends Component {

constructor() {

super();

this.doSomething = this.doSomething.bind(this);

this.doSomethingElse = this.doSomethingElse.bind(this);

}

doSomething() {

// do something

}

doSomethingElse() {

// do something else

}

...

}

Class methods can be auto-bound using JavaScript ES6 arrow functions:

Code Playground

class ExplainBindingsComponent extends Component {

onClickMe = () => {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

</button>

);

}

}

Use this method if the repetitive binding in the constructor annoys you. The official React
documentation sticks to the class method bindings in the constructor, so this book will stick with
those as well.

Basics in React 43

Exercises:

• Try different approaches of bindings and console log the this object
• Learn more about an alternative React component syntax⁷¹

⁷¹https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax

https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax

Basics in React 44

Event Handler

Now we’ll cover event handlers in elements. In your application, you are using the following button
element to dismiss an item from the list.

src/App.js
...

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

...

This function is already complex, because it passes a value to the class method and has to wrap it in
another (arrow) function. Essentially, it has to be a function that is passed to the event handler. The
following code wouldn’t work, because the class method would be executed immediately when you
open the application in the browser:

src/App.js
...

<button

onClick={this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

...

When using onClick={doSomething()}, the doSomething() function executes immediately when the
application is opened in a browser. The expression in the handler is evaluated. Since the returned
value of the function isn’t a function anymore, nothing would happen when you click the button.
But using onClick={doSomething} where doSomething is a function, it would only be executed if
the button is clicked. The same rules apply for the onDismiss() class method.

However, using onClick={this.onDismiss} wouldn’t suffice, because the item.objectID property
needs to be passed to the class method to identify the item that should be dismissed. We wrap it into
another function to sneak in the property. This concept is called higher-order functions in JavaScript,
which we will cover briefly later.

Basics in React 45

src/App.js

...

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

...

We can also define wrapping function outside the method, to pass only the defined function to the
handler. Since it needs access to the individual item, it has to live inside the map function block.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item => {

const onHandleDismiss = () =>

this.onDismiss(item.objectID);

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={onHandleDismiss}

type="button"

>

Dismiss

</button>

Basics in React 46

</div>

);

}

)}

</div>

);

}

}

A function has to be passed to the element’s handler. As an example, try this code instead:

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

...

<button

onClick={console.log(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

This method will run when you open the application in the browser, but not when you click the
button. The following code would only run when you click the button, a function that is executed
when you trigger the handler:

Basics in React 47

src/App.js

...

<button

onClick={function () {

console.log(item.objectID)

}}

type="button"

>

Dismiss

</button>

...

Remember: You can transform functions into a JavaScript ES6 arrow function, just as we did with
the onDismiss() class method:

src/App.js

...

<button

onClick={() => console.log(item.objectID)}

type="button"

>

Dismiss

</button>

...

Newcomers to React often have difficulty using functions in event handlers, so don’t get discouraged
if you have trouble on the first pass. You should end upwith an inlined JavaScript ES6 arrow function
with access to the objectID property of the item object:

Basics in React 48

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

<div key={item.objectID}>

...

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

Using arrow functions in event handlers directly impacts your application’s performance. For
instance, the onClick handler for the onDismiss() method wraps the method in another arrow
function to pass the item identifier. Every time the render() method runs, the handler instantiates
the higher-order arrow function. It can have an impact on your application performance, but in most
cases you won’t notice. If you have a huge table of data with 1000 items and each row or column has
an arrow function in an event handler, it is worth thinking about the performance implications, so
you could implement a dedicated Button component to bind the method in the constructor. Before
that, though, it is premature optimization, and it is more prudent learn the basics of React before
thinking about optimization.

Exercises:

• Try the different approaches of using functions in the onClick handler of your button

Basics in React 49

Interactions with Forms and Events

We’ll add another interaction to see forms and events in React, a search functionality where the
input the search field temporarily filters a list based on the title property of an item.

In the first step, we define a form with an input field in JSX:

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input type="text" />

</form>

{this.state.list.map(item =>

...

)}

</div>

);

}

}

In the following scenario you will type into the input field and filter the list temporarily by the
search term that is used in the input field. To filter the list based on the value of the input field, we
store the value of the input field in the local state. We use synthetic events in React to access a
value in an event payload.

Let’s define a onChange handler for the input field:

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

Basics in React 50

type="text"

onChange={this.onSearchChange}

/>

</form>

...

</div>

);

}

}

The function is bound to the component, so it is a class method again. You just need to bind and
define the method:

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

onSearchChange() {

...

}

...

}

When using a handler in your element, you get access to the synthetic React event in your callback
function’s signature.

Basics in React 51

src/App.js

class App extends Component {

...

onSearchChange(event) {

...

}

...

}

The event has the value of the input field in its target object, so you can update the local state with
a search term using this.setState().

src/App.js

class App extends Component {

...

onSearchChange(event) {

this.setState({ searchTerm: event.target.value });

}

...

}

Don’t forget to define the initial state for the searchTerm property in the constructor. The input field
should be empty in the beginning, so its value is an empty string.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

searchTerm: '',

};

Basics in React 52

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

}

We store the input value to the local state every time the value in the input field changes.

We can assume that when we update searchTerm with this.setState(), the list also needs to be
passed to preserve it. React’s this.setState() is a shallow merge, however, so it preserves the
sibling properties in the state object when it updates a property. The list state, though you have
already dismissed an item from it, stays the same when updating the searchTerm property.

Returning to the application, we see the list isn’t filtered yet, based on the input field value stored in
the local state.We need to filter the list temporarily based on the searchTerm, andwe have everything
we need to perform this operation. In the render() method, before mapping over the list, we apply
a filter to it. The filter will only evaluate if the searchTerm matches the title property of the item.
We’ve already used the built-in JavaScript filter functionality, so let’s use it again to sneak in the
filter function before the map function. The filter function returns a new array, so the map function
can be used on it.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

type="text"

onChange={this.onSearchChange}

/>

</form>

{this.state.list.filter(...).map(item =>

...

)}

</div>

);

}

}

Basics in React 53

Let’s approach the filter function in a different way this time. We want to define the filter argument,
which is the function passed to the filter function outside the ES6 class component. We don’t have
access to the state of the component, so we have no access to the searchTerm property to evaluate
the filter condition. This means we’ll need to pass the searchTerm to the filter function, returning a
new function to evaluate the condition. This is called a higher-order function.

It makes sense to know about higher-order functions, because React deals with a concept called
higher-order components. You will get to know the concept later in the book. Now again, let’s focus
on the filter functionality.

First, you have to define the higher-order function outside of your App component.

src/App.js

function isSearched(searchTerm) {

return function (item) {

// some condition which returns true or false

}

}

class App extends Component {

...

}

The function takes the searchTerm and returns another function, because the filter function only
takes that type as its input. The returned function has access to the item object, because it is the one
passed to the filter function.

It will also be used to filter the list based on the condition defined in the function, so let’s define the
condition:

src/App.js

function isSearched(searchTerm) {

return function (item) {

return item.title.toLowerCase().includes(searchTerm.toLowerCase());

}

}

class App extends Component {

...

}

Basics in React 54

The condition matches the incoming searchTerm pattern with the title property of the item from
your list. You can do that with the built-in includes JavaScript functionality. When the pattern
matches, it returns true and the item stays in the list; when the pattern doesn’t match, the item is
removed from the list. Don’t forget to match the capitalizion on both strings to the letter, as there
will be mismatches between the search term ‘redux’ and an item title ‘Redux’. Since we are working
on a immutable list and return a new list by using the filter function, the original list in the local
state isn’t modified at all.

We cheated a bit using JavaScript ES7 features, but these aren’t present in ES5. For ES5, use the
indexOf() function to get the index of the item in the list instead. When the item is in the list,
indexOf() will return its index in the array.

Code Playground

// ES5

string.indexOf(pattern) !== -1

// ES6

string.includes(pattern)

Another neat refactoring can be done with an ES6 arrow function again. It makes the function more
concise:

Code Playground

// ES5

function isSearched(searchTerm) {

return function (item) {

return item.title.toLowerCase().indexOf(searchTerm.toLowerCase()) !== -1;

}

}

// ES6

const isSearched = searchTerm => item =>

item.title.toLowerCase().includes(searchTerm.toLowerCase());

The React ecosystem uses a lot of functional programming concepts, often using functions that
return functions (the concept is called high-order functions) to pass information. JavaScript ES6 lets
us express these even more concisely with arrow functions.

Last but not least, use the defined isSearched() function to filter lists. We pass it the searchTerm

property from the local state, so that it returns the filter’s input function and filters your list based
on the filter condition. After that it maps over the filtered list to display an element for each list
item.

Basics in React 55

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

type="text"

onChange={this.onSearchChange}

/>

</form>

{this.state.list.filter(isSearched(this.state.searchTerm)).map(item =>

...

)}

</div>

);

}

}

The search functionality should work now. Try it yourself in the browser.

Exercises:

• Read about React events⁷²
• Read about higher-order functions⁷³

⁷²https://reactjs.org/docs/handling-events.html
⁷³https://en.wikipedia.org/wiki/Higher-order_function

https://reactjs.org/docs/handling-events.html
https://en.wikipedia.org/wiki/Higher-order_function
https://reactjs.org/docs/handling-events.html
https://en.wikipedia.org/wiki/Higher-order_function

Basics in React 56

ES6 Destructuring

Destructuring in JavaScript ES6 provides easier access to properties in objects and arrays. Compare
the following snippet in JavaScript ES5 and ES6:

Code Playground

const user = {

firstname: 'Robin',

lastname: 'Wieruch',

};

// ES5

var firstname = user.firstname;

var lastname = user.lastname;

console.log(firstname + ' ' + lastname);

// output: Robin Wieruch

// ES6

const { firstname, lastname } = user;

console.log(firstname + ' ' + lastname);

// output: Robin Wieruch

While we add an extra line each time we access an object property in JavaScript ES5, it takes just one
line in JavaScript ES6. For readability, use multilines when you destructure an object into multiple
properties.

Code Playground

const {

firstname,

lastname

} = user;

The same concept applies to arrays. You can destructure them, too, again using multilines to keep
your code scannable and readable.

Basics in React 57

Code Playground

const users = ['Robin', 'Andrew', 'Dan'];

const [

userOne,

userTwo,

userThree

] = users;

console.log(userOne, userTwo, userThree);

// output: Robin Andrew Dan

Note that the local state object in the App component can get destructured the same way. You can
shorten the filter and map line of code.

src/App.js

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

...

{list.filter(isSearched(searchTerm)).map(item =>

...

)}

</div>

);

You can do it the ES5 or ES6 way:

Code Playground

// ES5

var searchTerm = this.state.searchTerm;

var list = this.state.list;

// ES6

const { searchTerm, list } = this.state;

But since the book uses JavaScript ES6 most of the time, you should stick to it.

Exercises:

• Read about ES6 destructuring⁷⁴

⁷⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Basics in React 58

Controlled Components

We covered unidirectional data flows before, and the same law applies for the input field, which
updates the local state with the searchTerm to filter the list. When the state changes, the render()
method runs again and uses the recent searchTerm from the local state to apply the filter condition.

But didn’t we forget something in the input element? An HTML input tag comes with a value

attribute. The value attribute usually contains the value shown in the input field. In this case, that is
the searchTerm property. Form elements such as <input>, <textarea>, and <select> hold their own
state in plain HTML. They modify the value internally once someone changes it from the outside.
In React, that’s called an uncontrolled component, because it handles its own state. We want to
make sure those elements are controlled components instead.

To do this, we set the value attribute of the input field, which is already saved in the searchTerm

state property, so we can access it from there:

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<form>

<input

type="text"

value={searchTerm}

onChange={this.onSearchChange}

/>

</form>

...

</div>

);

}

}

The unidirectional data flow loop for the input field is self-contained, and the local component state
is the single source of truth for the input field.

Local state management and unidirectional data flow might be new to you, but once you adjust
to it, it will likely become your natural flow of React implementation. React brings novel patterns

Basics in React 59

with unidirectional data flow, which have been adopted by several frameworks and libraries which
create single page applications.

Exercises:

• Read about React forms⁷⁵
• Learn more about different controlled components⁷⁶

⁷⁵https://reactjs.org/docs/forms.html
⁷⁶https://github.com/the-road-to-learn-react/react-controlled-components-examples

https://reactjs.org/docs/forms.html
https://github.com/the-road-to-learn-react/react-controlled-components-examples
https://reactjs.org/docs/forms.html
https://github.com/the-road-to-learn-react/react-controlled-components-examples

Basics in React 60

Split Up Components

Nowwe have one large App component that keeps growing andmay eventually become too complex
to manage efficiently. We need to split it into smaller, more manageable parts by creating separate
components for search input and the items list.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search />

<Table />

</div>

);

}

}

We pass the components properties that they can use themselves. The App component needs to pass
the properties managed in the local state and its class methods.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search

value={searchTerm}

onChange={this.onSearchChange}

/>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

Basics in React 61

/>

</div>

);

}

}

Now we define the components next to the App component, which will be done using JavaScript
ES6 by using classes. They render the same elements as before.

The first one is the Search component:

src/App.js

class App extends Component {

...

}

class Search extends Component {

render() {

const { value, onChange } = this.props;

return (

<form>

<input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

}

The second one is the Table component.

src/App.js

...

class Table extends Component {

render() {

const { list, pattern, onDismiss } = this.props;

return (

<div>

{list.filter(isSearched(pattern)).map(item =>

Basics in React 62

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={() => onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

Now you have three ES6 class components. Notice the props object is accessible via the class instance
by using this. Props, short for properties, have all the values passed to the components when we
used App component. That way, components can pass properties down the component tree.

By extracting these components from the App component, they become reusable. Since components
get their values using the props object, you can pass different props to your components every time
you use them somewhere else.

Exercises:

• Discover more components that can be split up like the Search and Table components, but wait
until we’ve covered more of its concepts before you implement any of them.

Basics in React 63

Composable Components

The children prop is used to pass elements to components from above, which are unknown to the
component itself but make it possible to compose components together. We’ll see how this looks
when you pass a text string as a child to the Search component.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Now the Search component can destructure the children property from the props object, and specify
where it should be displayed.

Basics in React 64

src/App.js

class Search extends Component {

render() {

const { value, onChange, children } = this.props;

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

}

The “Search” text should now be visible next to your input field.When you use the Search component
elsewhere, you can use different entities, since it’s not just text that can be passed as children. You
can also pass an element, or element trees that can be encapsulated by components, as children. The
children property makes it possible to weave components into each other.

Exercises:

• Read about the composition model of React⁷⁷

⁷⁷https://reactjs.org/docs/composition-vs-inheritance.html

https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html

Basics in React 65

Reusable Components

Reusable and composable components empower you to come up with capable component hierar-
chies, the foundation of React’s view layer. The last sections mentioned reusability, and now we can
see how reusing the Table and Search components works in our case. Even the App component is
reusable, as it can be instantiated elsewhere as well.

Let’s define one more reusable component, a Button component which we’ll eventually reuse often:

src/App.js

class Button extends Component {

render() {

const {

onClick,

className,

children,

} = this.props;

return (

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

);

}

}

It might seem redundant to declare components like this, but it’s not. We use a Button component
instead of a button element, which spares only the type="button". It might not seem like a huge
win, but these measures are about long term, however. Imagine you have several buttons in your
application, and you want to change an attribute, style, or behavior for just one. Without the
component, you’d have to change (refactor) each one. The Button component ensures that the
operation has a single source of truth, or one Button to refactor all the others at once.

Since you already have a button element, you can use the Button component instead. It omits the
type attribute, because the Button component specifies it.

Basics in React 66

src/App.js

class Table extends Component {

render() {

const { list, pattern, onDismiss } = this.props;

return (

<div>

{list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button onClick={() => onDismiss(item.objectID)}>

Dismiss

</Button>

</div>

)}

</div>

);

}

}

The Button component expects a className property in the props. The className attribute is another
React derivate for the HTML attribute class. We didn’t pass any className when the Button was
used, though. It should be more explicit in our Button component that the className is optional, so
we’ll assign a default value in the object destructuring.

src/App.js

class Button extends Component {

render() {

const {

onClick,

className = '',

children,

} = this.props;

...

Basics in React 67

}

}

Now, whenever there is no className property specified in the Button component, the value will be
an empty string instead of undefined.

Exercises:

• Read about how to pass props in React⁷⁸

⁷⁸https://www.robinwieruch.de/react-pass-props-to-component/

https://www.robinwieruch.de/react-pass-props-to-component/
https://www.robinwieruch.de/react-pass-props-to-component/

Basics in React 68

Component Declarations

Now we have four ES6 class components, but the application can still be improved using functional
stateless components as alternative for ES6 class components. Before you refactor your components,
let’s introduce the different types.

• Functional Stateless Components are functions that take input and return an output. The
inputs are the props, and the output is a component instance in plain JSX. So far, it is quite
similar to an ES6 class component. However, functional stateless components are functions
(functional) and they have no local state (stateless). You cannot access or update the state with
this.state or this.setState() because there is no this object. Additionally, they have no
lifecycle methods except for the render()methodwhich will be applied implicitly in functional
stateless components. You didn’t learn about lifecycle methods yet, but you already used two:
constructor() and render(). The constructor runs only once in the lifetime of a component,
whereas the render() class method runs once in the beginning and every time the component
updates. Keep in mind that functional stateless components have no lifecycle methods, when
we arrive at lifecycle methods chapter later.

• ES6 Class Components extend from the React component. The extend hooks all the lifecycle
methods, available in the React component API, to the component. This is how we were able to
use the render() class method. You can also store andmanipulate state in ES6 class components
using this.state and this.setState().

• React.createClasswas used in older versions of React, and is still used in JavaScript ES5 React
applications. But Facebook declared it as deprecated⁷⁹ in favor of JavaScript ES6. They even
added a deprecation warning in version 15.5⁸⁰, so we will not use it in the book.

When deciding when to use functional stateless components over ES6 class components, a good rule
of thumb is to use functional stateless components when you don’t need local state or component
lifecycle methods. Usually, we implement components as functional stateless components, but once
access to the state or lifecycle methods is required, we have to refactor it to an ES6 class component.
We started the other way around in our application for the sake of learning.

Returning to the application, we see the App component uses local state, so it has to stay as an ES6
class component. The other three ES6 class components are stateless, so they don’t need access to
this.state or this.setState(), and they have no lifecycle methods. We’re going to refactor the
Search component to a stateless functional component. The Table and Button component refactoring
will become your exercise.

⁷⁹https://reactjs.org/blog/2015/03/10/react-v0.13.html
⁸⁰https://reactjs.org/blog/2017/04/07/react-v15.5.0.html

https://reactjs.org/blog/2015/03/10/react-v0.13.html
https://reactjs.org/blog/2017/04/07/react-v15.5.0.html
https://reactjs.org/blog/2015/03/10/react-v0.13.html
https://reactjs.org/blog/2017/04/07/react-v15.5.0.html

Basics in React 69

src/App.js

function Search(props) {

const { value, onChange, children } = props;

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

The props are accessible in the function signature, and the return value is JSX; but we can do more
with the code in a functional stateless component using ES6 destructuring. The best practice is to
use it in the function signature to destructure the props:

src/App.js

function Search({ value, onChange, children }) {

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

Remember that ES6 arrow functions allow you to keep your functions concise and let you remove
the block body of the function. In a concise body, an implicit return is attached, letting us remove
the return statement. Since the functional stateless component is a function, it can be made more
concise as well:

Basics in React 70

src/App.js

const Search = ({ value, onChange, children }) =>

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

The last step is especially useful to enforce props as input and JSX as output. Still, you could do
something in between by using a block body in your ES6 arrow function:

Code Playground

const Search = ({ value, onChange, children }) => {

// do something

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

Now you have one lightweight functional stateless component. When we need access to the local
component state or lifecycle methods, we can refactor it to a ES6 class component. When using
block bodies, programmers tend to make their functions more complex, but leaving the block body
out lets you focus on the input and output. JavaScript ES6 in React components makes components
more readable and elegant.

Exercises:

• Refactor the Table and Button component to stateless functional components
• Read about ES6 class components and functional stateless components⁸¹

⁸¹https://reactjs.org/docs/components-and-props.html

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html

Basics in React 71

Styling Components

In this section, we’ll add some basic styling to our application and components using the src/App.css
and src/index.css files. These files should already be in your project, since you have bootstrapped
it with create-react-app. They should be imported in your src/App.js and src/index.js files too. The
following is CSS that can be copied and pastes to these files, but feel free to use your own if you’re
comfortable with CSS.

First, styling for your overall application:

src/index.css

body {

color: #222;

background: #f4f4f4;

font: 400 14px CoreSans, Arial, sans-serif;

}

a {

color: #222;

}

a:hover {

text-decoration: underline;

}

ul, li {

list-style: none;

padding: 0;

margin: 0;

}

input {

padding: 10px;

border-radius: 5px;

outline: none;

margin-right: 10px;

border: 1px solid #dddddd;

}

button {

padding: 10px;

border-radius: 5px;

border: 1px solid #dddddd;

Basics in React 72

background: transparent;

color: #808080;

cursor: pointer;

}

button:hover {

color: #222;

}

*:focus {

outline: none;

}

Second, styling for your components in the App file:

src/App.css

.page {

margin: 20px;

}

.interactions {

text-align: center;

}

.table {

margin: 20px 0;

}

.table-header {

display: flex;

line-height: 24px;

font-size: 16px;

padding: 0 10px;

justify-content: space-between;

}

.table-empty {

margin: 200px;

text-align: center;

font-size: 16px;

}

.table-row {

Basics in React 73

display: flex;

line-height: 24px;

white-space: nowrap;

margin: 10px 0;

padding: 10px;

background: #ffffff;

border: 1px solid #e3e3e3;

}

.table-header > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

.table-row > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

.button-inline {

border-width: 0;

background: transparent;

color: inherit;

text-align: inherit;

-webkit-font-smoothing: inherit;

padding: 0;

font-size: inherit;

cursor: pointer;

}

.button-active {

border-radius: 0;

border-bottom: 1px solid #38BB6C;

}

Now we can use this style with some of our components. Remember to use React className instead
of class as an HTML attribute.

First, apply it in your App ES6 class component:

Basics in React 74

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

</div>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Second, apply it in your Table functional stateless component:

src/App.js

const Table = ({ list, pattern, onDismiss }) =>

<div className="table">

{list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button

Basics in React 75

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

</div>

)}

</div>

Now the application and components have been styled with basic CSS. Further, we know JSX mixes
up HTML and JavaScript, and nowwe could arguably add CSS to that mix. That’s called inline style,
where you can define JavaScript objects and pass them to the style attribute of an element.

Let’s keep the Table column width flexible by using inline style.

src/App.js

const Table = ({ list, pattern, onDismiss }) =>

<div className="table">

{list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

</div>

)}

</div>

Basics in React 76

The style is inlined now. Define the style objects outside of your elements to make it cleaner.

Code Playground

const largeColumn = {

width: '40%',

};

const midColumn = {

width: '30%',

};

const smallColumn = {

width: '10%',

};

After that, we use them in the columns: . There different opinions and
solutions about style in React, but the pure inline CSS we used is sufficient for this tutorial. I don’t
want to be opinionated here, but I want to leave you some more options. You can read about them
and apply them on your own:

• styled-components⁸²
• CSS Modules⁸³ (read my short article on how to use CSS modules in create-react-app⁸⁴)
• Sass⁸⁵ (read my short article on how to use Sass in create-react-app⁸⁶)

But if you are new to React, I would recommend to stick to pure CSS and inline style for now.

⁸²https://github.com/styled-components/styled-components
⁸³https://github.com/css-modules/css-modules
⁸⁴https://www.robinwieruch.de/create-react-app-css-modules/
⁸⁵https://sass-lang.com/
⁸⁶https://www.robinwieruch.de/create-react-app-with-sass-support/

https://github.com/styled-components/styled-components
https://github.com/css-modules/css-modules
https://www.robinwieruch.de/create-react-app-css-modules/
https://sass-lang.com/
https://www.robinwieruch.de/create-react-app-with-sass-support/
https://github.com/styled-components/styled-components
https://github.com/css-modules/css-modules
https://www.robinwieruch.de/create-react-app-css-modules/
https://sass-lang.com/
https://www.robinwieruch.de/create-react-app-with-sass-support/

Basics in React 77

You have learned the basics on how to write your own React application! Let’s recap the last chapter:

• React
– Use this.state and setState() to manage your local component state
– Pass functions or class methods to your element handler
– Use forms and events in React to add interactions
– Unidirectional data flow is an important concept in React
– Embrace controlled components
– Compose components with children and reusable components
– Usage and implementation of ES6 class components and functional stateless components
– Approaches to style your components

• ES6
– Functions that are bound to a class are class methods
– Destructuring of objects and arrays
– Default parameters

• General
– Higher-order functions

Again, it makes sense to take a break, internalize the lessons, and apply them on your own.
Experiment with the source code you have written so far. The source code for this project is found
in the official repository⁸⁷.

⁸⁷https://github.com/the-road-to-learn-react/hackernews-client/tree/5.2

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.2
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.2

Getting Real with APIs
Now it’s time to get real with APIs and move past sample data. If you are not familiar, I encourage
you to read my article on how I got to know APIs⁸⁸.

For our first foray into the concept, we will be using Hacker News⁸⁹, a solid news aggregator about
tech topics. In this exercise, we will use the Hacker News API to fetch trending stories. There are
basic⁹⁰ and search⁹¹ APIs to get data from the platform. Search makes sense in this application,
because we want to be able to search Hacker News stories. Visit the API specification to get an
understanding of the data structure.

⁸⁸https://www.robinwieruch.de/what-is-an-api-javascript/
⁸⁹https://news.ycombinator.com/
⁹⁰https://github.com/HackerNews/API
⁹¹https://hn.algolia.com/api

https://www.robinwieruch.de/what-is-an-api-javascript/
https://news.ycombinator.com/
https://github.com/HackerNews/API
https://hn.algolia.com/api
https://www.robinwieruch.de/what-is-an-api-javascript/
https://news.ycombinator.com/
https://github.com/HackerNews/API
https://hn.algolia.com/api

Getting Real with APIs 79

Lifecycle Methods

You may remember lifecycle methods were mentioned briefly in the last chapter, as a hook into
the lifecycle of a React component. They can be used in ES6 class components, but not in functional
stateless components. Besides the render()method, there are severalmethods that can be overridden
in a React ES6 class component. All of these are the lifecycle methods.

We have already covered two lifecycle methods that can be used in an ES6 class component:

• The constructor is only called when an instance of the component is created and inserted in
the DOM. The component gets instantiated in a process called mounting.

• The render() method is called during the mount process too, but also when the component
updates. Each time the state or the props of a component changes, the render() method is
called.

There are two more lifecycle methods when mounting a component: getDerivedStateFromProps()
and componentDidMount(). The constructor is called first, getDerivedStateFromProps() is called
before the render() method, and componentDidMount() is called after the render() method.

Overall, the mounting process has 4 lifecycle methods, invoked in the following order:

• constructor()
• getDerivedStateFromProps()
• render()
• componentDidMount()

For the update lifecycle of a component when the state or the props change, there are 5 lifecycle
methods, in the following order:

• getDerivedStateFromProps()
• shouldComponentUpdate()
• render()
• getSnapshotBeforeUpdate()
• componentDidUpdate()

Lastly, there is the unmounting lifecycle. It has only one lifecycle method: componentWillUnmount().

You don’t need to know all the lifecycle methods from the beginning, and even in a large React
application you’ll only use a few of them besides the constructor() and the render() methods.
Still, it is good to know each lifecycle method can be used for specific purposes:

• constructor(props) is called when the component gets initialized. You can set an initial
component state and bind class methods during that lifecycle method.

Getting Real with APIs 80

• static getDerivedStateFromProps(props, state) is called before the render() lifecyclemethod,
both on the initial mount and on the subsequent updates. It should return an object to update
the state, or null to update nothing. It exists for rare use cases where the state depends on
changes in props over time. It is important to know that this is a static method and it doesn’t
have access to the component instance.

• render() is a mandatory lifecycle method that returns elements as an output of the component.
Themethod should be pure, so it shouldn’t modify the component state. It gets an input as props
and state, and returns an element.

• componentDidMount() is called once, when the component mounted. That’s the perfect time
to do an asynchronous request to fetch data from an API. The fetched data is stored in the local
component state to display it in the render() lifecycle method.

• shouldComponentUpdate(nextProps, nextState) is always called when the component
updates due to state or props changes. You will use it in mature React applications for
performance optimization. Depending on a boolean that you return from this lifecycle method,
the component and all its children will render or will not render on an update lifecycle. You
can prevent the render lifecycle method of a component.

• getSnapshotBeforeUpdate(prevProps, prevState) is a lifecycle method, invoked before the
most recently rendered output is committed to the DOM. In rare cases, the component needs
to capture information from the DOM before it is potentially changed. This lifecycle method
enables the component to do it. Another method (componentDidUpdate()) will receive any
value returned by getSnapshotBeforeUpdate() as a parameter.

• componentDidUpdate(prevProps, prevState, snapshot) is a lifecycle method that is invoked
immediately after updating, but not for the initial render. You can use it as to perform DOM
operations or to perform more asynchronous requests. If your component implements the
getSnapshotBeforeUpdate() method, the value it returns will be received as the snapshot

parameter.
• componentWillUnmount() is called before you destroy your component. You can use this
lifecycle method to perform any clean up tasks.

As you may have gathered, the constructor() and render() lifecycle methods are the most
commonly used lifecycle methods for ES6 class components. The render() method is always
required to return a component instance.

Lastly, componentDidCatch(error, info) was introduced in React 16⁹² as a way to catch errors in
components. For instance, displaying the sample list in your application works fine, but there could
be a time when a list in the local state is set to null by accident (e.g. when fetching the list from
an external API, but the request failed and you set the local state of the list to null). It becomes
impossible to filter and map the list, because it is null and not an empty list. The component would
be broken, and the whole application would fail. Using componentDidCatch(), you can catch the
error, store it in your local state, and show a message to the user.

⁹²https://www.robinwieruch.de/what-is-new-in-react-16/

https://www.robinwieruch.de/what-is-new-in-react-16/
https://www.robinwieruch.de/what-is-new-in-react-16/

Getting Real with APIs 81

Exercises:

• Read about lifecycle methods in React⁹³
• Read about the state related to lifecycle methods in React⁹⁴
• Read about error handling in components⁹⁵

⁹³https://reactjs.org/docs/react-component.html
⁹⁴https://reactjs.org/docs/state-and-lifecycle.html
⁹⁵https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

Getting Real with APIs 82

Fetching Data

Now we’re prepared to fetch data from the Hacker News API. There was one lifecycle method
mentioned that can be used to fetch data: componentDidMount(). Before we use it, let’s set up the
URL constants and default parameters to break the URL endpoint for the API request into smaller
pieces.

src/App.js

import React, { Component } from 'react';

import './App.css';

const DEFAULT_QUERY = 'redux';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

...

In JavaScript ES6, you can use template literals⁹⁶ for string concatenation or interpolation. You will
use it to concatenate your URL for the API endpoint.

Code Playground

// ES6

const url = `${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${DEFAULT_QUERY}`;

// ES5

var url = PATH_BASE + PATH_SEARCH + '?' + PARAM_SEARCH + DEFAULT_QUERY;

console.log(url);

// output: https://hn.algolia.com/api/v1/search?query=redux

This will keep your URL composition flexible in the future. Below, the entire data fetch process will
be presented, and each step will be explained afterward.

⁹⁶https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

Getting Real with APIs 83

src/App.js

...

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

setSearchTopStories(result) {

this.setState({ result });

}

componentDidMount() {

const { searchTerm } = this.state;

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

...

}

First, we remove the sample list of items, because we will return a real list from the Hacker News
API, so the sample data is no longer used. The initial state of your component has an empty result
and default search term now. The same default search term is used in the input field of the Search
component, and in your first request.

Second, you use the componentDidMount() lifecycle method to fetch the data after the component
mounted. The first fetch uses default search term from the local state. It will fetch “redux” related
stories, because that is the default parameter.

Getting Real with APIs 84

Third, the native fetch API is used. The JavaScript ES6 template strings allow it to compose the URL
with the searchTerm. The URL is the argument for the native fetch API function. The response is
transformed to a JSON data structure, a mandatory step in a native fetch with JSON data structures,
after which it can be set as result in the local component state. If an error occurs during the request,
the function will run into the catch block instead of the then block.

Last, remember to bind your new component method in the constructor.

Now you can use the fetched data instead of the sample list. Note that the result is not only a list of
data, but a complex object with meta information and a list of hits that are news stories⁹⁷. You can
output the lcoal state with console.log(this.state); in your render() method to visualize it.

In the next step, we use the result to render it. But we will prevent it from rendering anything, so we
will return null, when there is no result in the first place. Once the request to the API has succeeded,
the result is saved to the state and the App component will re-render with the updated state.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

if (!result) { return null; }

return (

<div className="page">

...

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Now, let’s recap what happens during the component lifecycle. Your component is initialized
by the constructor, after which it renders for the first time. We prevented it from displaying
anything, because the result in the local state is null. It is allowed to return null for a component
to display nothing. Then the componentDidMount() lifecycle method fetches the data from the

⁹⁷https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with APIs 85

Hacker News API asynchronously. Once the data arrives, it changes your local component state
in setSearchTopStories(). The update lifecycle activates because the local state was updated. The
component runs the render() method again, but this time with populated result in your local
component state. The component and the Table component will be rendered with its content.

We used the native fetch API supported by most browsers to perform an asynchronous request to an
API. The create-react-app configuration makes sure it is supported by all browsers. There are also
third-party node packages that you can use to substitute the native fetch API: axios⁹⁸. You will use
axios later in this book.

In this book, we build on JavaScript’s shorthand notation for truthfulness checks. In the previous
example, if (!result) was used in favor of if (result === null). The same applies for other
cases as well. For instance, if (!list.length) is used in favor of if (list.length === 0) or if
(someString) is used in favor of if (someString !== '').

The list of hits should now be visible in our application; however, two regression bugs have appeared.
First, the “Dismiss” button is broken, because it doesn’t know about the complex result object, but
it still operates on the plain list from the sample data when dismissing an item. Second, when the
list is displayed and you try to search for something else, it gets filtered on the client-side, though
the initial search was made by searching for stories on the server-side. The perfect behavior would
be to fetch another result object from the API when using the Search component. Both regression
bugs will be fixed in the following chapters.

Exercises:

• Read about ES6 template literals⁹⁹
• Read about the native fetch API¹⁰⁰
• Read about data fetching in React¹⁰¹

⁹⁸https://github.com/mzabriskie/axios
⁹⁹https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
¹⁰⁰https://developer.mozilla.org/en/docs/Web/API/Fetch_API
¹⁰¹https://www.robinwieruch.de/react-fetching-data/

https://github.com/mzabriskie/axios
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://www.robinwieruch.de/react-fetching-data/
https://github.com/mzabriskie/axios
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://www.robinwieruch.de/react-fetching-data/

Getting Real with APIs 86

ES6 Spread Operators

The “Dismiss” button doesn’t work because the onDismiss() method is not aware of the complex
result object. It only knows about a plain list in the local state. But it isn’t a plain list anymore. Let’s
change it to operate on the result object instead of the list itself.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

...

});

}

In setState(), the result is now a complex object, and the list of hits is only one ofmultiple properties
in the object. Only the list gets updated when an item gets removed in the result object, though, while
the other properties stay the same.

We could alleviate this challenge by mutating the hits in the result object. It is demonstrated below
for the sake of understanding, but we’ll end up using another way.

Code Playground

// don't do this

this.state.result.hits = updatedHits;

As we know, React embraces immutable data structures, so we don’t want to mutate an object (or
mutate the state directly). We want to generate a new object based on the information given, so
none of the objects get altered and we keep the immutable data structures. You will always return a
new object, but never alter the original object.

For this, we use JavaScript ES6’s Object.assign(). It takes a target object as first argument. All
following arguments are source objects, which are merged into the target object. The target object
can be an empty object. It embraces immutability, because no source object gets mutated.

Code Playground

const updatedHits = { hits: updatedHits };

const updatedResult = Object.assign({}, this.state.result, updatedHits);

Source objects will override previously merged objects with the same property names. Let’s do this
on the onDismiss() method:

Getting Real with APIs 87

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

result: Object.assign({}, this.state.result, { hits: updatedHits })

});

}

That’s one solution, but there is a simpler way in JavaScript ES6, called the spread operator. The
spread operator is shown with three dots: ... When it is used, every value from an array or object
gets copied to another array or object.

We’ll examine the ES6 array spread operator even though you don’t need it yet:

Code Playground

const userList = ['Robin', 'Andrew', 'Dan'];

const additionalUser = 'Jordan';

const allUsers = [...userList, additionalUser];

console.log(allUsers);

// output: ['Robin', 'Andrew', 'Dan', 'Jordan']

The allUsers variable is a completely new array. The other variables userList and additionalUser

stay the same. You can even merge two arrays into a new array.

Code Playground

const oldUsers = ['Robin', 'Andrew'];

const newUsers = ['Dan', 'Jordan'];

const allUsers = [...oldUsers, ...newUsers];

console.log(allUsers);

// output: ['Robin', 'Andrew', 'Dan', 'Jordan']

Now let’s have a look at the object spread operator, which is not JavaScript ES6. It is part of a
proposal for a next JavaScript version¹⁰² that is already being used by the React community, which
is why create-react-app incorporated the feature in the configuration. The object spread operator
works just like the JavaScript ES6 array spread operator, except with objects. Each key value pair is
copied into a new object:

¹⁰²https://github.com/sebmarkbage/ecmascript-rest-spread

https://github.com/sebmarkbage/ecmascript-rest-spread
https://github.com/sebmarkbage/ecmascript-rest-spread

Getting Real with APIs 88

Code Playground

const userNames = { firstname: 'Robin', lastname: 'Wieruch' };

const age = 28;

const user = { ...userNames, age };

console.log(user);

// output: { firstname: 'Robin', lastname: 'Wieruch', age: 28 }

Multiple objects can be spread, as with the array spread example.

Code Playground

const userNames = { firstname: 'Robin', lastname: 'Wieruch' };

const userAge = { age: 28 };

const user = { ...userNames, ...userAge };

console.log(user);

// output: { firstname: 'Robin', lastname: 'Wieruch', age: 28 }

It can be used to replace Object.assign():

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

result: { ...this.state.result, hits: updatedHits }

});

}

The “Dismiss” button should work now, because the onDismiss() method is aware of the complex
result object, and how to update it after dismissing an item from the list.

Exercises:

• Read about the ES6 Object.assign()¹⁰³
• Read about the ES6 array (and object) spread operator¹⁰⁴

¹⁰³https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
¹⁰⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

Getting Real with APIs 89

Conditional Rendering

Conditional rendering is usually introduced early in React applications, though not in our working
example. It happens when you decide to render either of two elements, which sometimes is a choice
between rendering an element or nothing. The simplest usage of a conditional rendering can be
expressed by an if-else statement in JSX.

The result object in the local component state is null in the beginning. So far, the App component
returned no elements when the result hasn’t arrived from the API. That’s already a conditional
rendering, because you return earlier from the render() lifecycle method for a certain condition.
The App component either renders nothing or its elements.

But let’s go one step further. It makes more sense to wrap the Table component, which is the only
component that depends on result in an independent conditional rendering. Everything else should
be displayed, even though there is no result yet. You can simply use a ternary operator¹⁰⁵ in the
JSX:

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

</div>

{ result

? <Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

: null

}

¹⁰⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

Getting Real with APIs 90

</div>

);

}

}

That’s your second option to express a conditional rendering. A third option is the logical && operator.
In JavaScript a true && 'Hello World' always evaluates to ‘HelloWorld’. A false && 'Hello World'

always evaluates to false.

Code Playground

const result = true && 'Hello World';

console.log(result);

// output: Hello World

const result = false && 'Hello World';

console.log(result);

// output: false

In React, you can make use of that behavior. If the condition is true, the expression after the logical
&& operator will be the output. If the condition is false, React ignores the expression. It is applicable in
the Table component’s conditional rendering case, because it should either return a Table or nothing.

src/App.js

{ result &&

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

}

These were a few approaches to use conditional rendering in React. You can read about more
alternatives in an exhaustive list of examples¹⁰⁶. Moreover, you will get to know their different
uses and when to apply them.

You should be able to see the fetched data in your application by now. Everything except the Table
is displayed when data fetching is pending. Once the request resolves the result and stores it into
the local state, the Table is displayed because the render()method runs again, and the condition in
the conditional rendering resolves in favor of displaying the Table component.

¹⁰⁶https://www.robinwieruch.de/conditional-rendering-react/

https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/

Getting Real with APIs 91

Exercises:

• Read about different ways for conditional renderings¹⁰⁷
• Read about React conditional rendering¹⁰⁸

¹⁰⁷https://www.robinwieruch.de/conditional-rendering-react/
¹⁰⁸https://reactjs.org/docs/conditional-rendering.html

https://www.robinwieruch.de/conditional-rendering-react/
https://reactjs.org/docs/conditional-rendering.html
https://www.robinwieruch.de/conditional-rendering-react/
https://reactjs.org/docs/conditional-rendering.html

Getting Real with APIs 92

Client- or Server-side Search

Now, when you use the Search component with its input field, you will filter the list. That’s
happening on the client-side, though. We want to use the Hacker News API to search on the server-
side. Otherwise you would only deal with the first API response you got on componentDidMount(),
the default search term parameter.

You can define an onSearchSubmit() method in your App component, which fetches results from
the Hacker News API when executing a search in the Search component.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

onSearchSubmit() {

const { searchTerm } = this.state;

}

...

}

The onSearchSubmit() method should use the same functionality as the componentDidMount()

lifecycle method, but this time with a modified search term from the local state and not with the
initial default search term. Thus you can extract the functionality as a reusable class method.

Getting Real with APIs 93

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

fetchSearchTopStories(searchTerm) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

componentDidMount() {

const { searchTerm } = this.state;

this.fetchSearchTopStories(searchTerm);

}

...

onSearchSubmit() {

const { searchTerm } = this.state;

this.fetchSearchTopStories(searchTerm);

}

...

}

Getting Real with APIs 94

Now the Search component has to add an additional button to trigger the search request explicitly.
Otherwise, we’d fetch data from the Hacker News API every time the input field changes. We want
to do it explicitly in a onClick() handler.

As an alternative, you could debounce (delay) the onChange() function and spare the button, but it
would add more complexity, and we want to keep things simple for now.

First, pass the onSearchSubmit() method to your Search component.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

onSubmit={this.onSearchSubmit}

>

Search

</Search>

</div>

{ result &&

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

}

</div>

);

}

}

Second, introduce a button in your Search component. The button has the type="submit" and the
form uses its onSubmit attribute to pass the onSubmit()method. You can reuse the children property,
but this time it will be used as the content of the button.

Getting Real with APIs 95

src/App.js

const Search = ({

value,

onChange,

onSubmit,

children

}) =>

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

/>

<button type="submit">

{children}

</button>

</form>

In the Table, you can remove the filter functionality, because therewill be no client-side filter (search)
anymore. Don’t forget to remove the isSearched() function as well, as it won’t be used anymore.
Now, the result comes directly from the Hacker News API when the user clicks the “Search” button.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

...

{ result &&

<Table

list={result.hits}

onDismiss={this.onDismiss}

/>

}

</div>

);

}

}

Getting Real with APIs 96

...

const Table = ({ list, onDismiss }) =>

<div className="table">

{list.map(item =>

...

)}

</div>

Now when you try to search, you will notice the browser reloads. That’s a native browser behavior
for a submit callback in an HTML form. In React, you will often come across the preventDefault()
event method to suppress the native browser behavior.

src/App.js

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.fetchSearchTopStories(searchTerm);

event.preventDefault();

}

You should be able to search different Hacker News stories now. We have interacted with a real API,
and there should be no more client-side searches.

Exercises:

• Read about synthetic events in React¹⁰⁹
• Experiment with the Hacker News API¹¹⁰

¹⁰⁹https://reactjs.org/docs/events.html
¹¹⁰https://hn.algolia.com/api

https://reactjs.org/docs/events.html
https://hn.algolia.com/api
https://reactjs.org/docs/events.html
https://hn.algolia.com/api

Getting Real with APIs 97

Paginated Fetch

Take a closer look at the data structure and observe how the Hacker News API¹¹¹ returns more than
a list of hits. Precisely it returns a paginated list. The page property, which is 0 in the first response,
can be used to fetch more paginated sublists as results. You only need to pass the next page with the
same search term to the API.

Let’s extend the composable API constants so it can deal with paginated data:

src/App.js

const DEFAULT_QUERY = 'redux';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

Now you can use the new constant to add the page parameter to your API request:

Code Playground

const url = `${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${DEFAULT_QUERY}&${PARAM_PAGE\

}`;

console.log(url);

// output: https://hn.algolia.com/api/v1/search?query=redux&page=

The fetchSearchTopStories() method will take the page as second argument. If you don’t
provide the second argument, it will fallback to the 0 page for the initial request. Thus the
componentDidMount() and onSearchSubmit()methods fetch the first page on the first request. Every
additional fetch should fetch the next page by providing the second argument.

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}`)

.then(response => response.json())

¹¹¹https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with APIs 98

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

...

}

The page argument uses the JavaScript ES6 default parameter to introduce the fallback to page 0 in
case no defined page argument is provided for the function.

Now you can use the current page from the API response in fetchSearchTopStories(). You can use
this method in a button to fetch more stories with an onClick button handler. Let’s use the Button to
fetch more paginated data from the Hacker News API. For this, we’ll define the onClick() handler,
which takes the current search term and the next page (current page + 1).

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

const page = (result && result.page) || 0;

return (

<div className="page">

<div className="interactions">

...

{ result &&

<Table

list={result.hits}

onDismiss={this.onDismiss}

/>

}

<div className="interactions">

<Button onClick={() => this.fetchSearchTopStories(searchTerm, page + 1)}>

More

</Button>

</div>

</div>

);

}

}

Getting Real with APIs 99

In your render() method, make sure to default to page 0 when there is no result. Remember, the
render() method is called before the data is fetched asynchronously in the componentDidMount()

lifecycle method.

There is still one step missing, because fetching the next page of data will override your previous
page of data. We want to concatenate the old and new list of hits from the local state and new result
object, so we’ll adjust its functionality to add new data rather than override it.

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

const oldHits = page !== 0

? this.state.result.hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

result: { hits: updatedHits, page }

});

}

A couple things happen in the setSearchTopStories()method now. First, you get the hits and page
from the result.

Second, you have to check if there are already old hits. When the page is 0, it is a new search request
from componentDidMount() or onSearchSubmit(). The hits are empty. But when you click the “More”
button to fetch paginated data the page isn’t 0. The old hits are already stored in your state and thus
can be used.

Third, you don’t want to override the old hits. You can merge old and new hits from the recent API
request, which can be done with a JavaScript ES6 array spread operator.

Fourth, you set the merged hits and page in the local component state.

Now we’ll make one last adjustment. When you try the “More” button it only fetches a few list
items. The API URL can be extended to fetch more list items with each request, so we add even
more composable path constants:

Getting Real with APIs 100

src/App.js

const DEFAULT_QUERY = 'redux';

const DEFAULT_HPP = '100';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

const PARAM_HPP = 'hitsPerPage=';

Now you can use the constants to extend the API URL.

src/App.js

fetchSearchTopStories(searchTerm, page = 0) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${page\

}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

The request to the Hacker News API fetches more list items in one request than before. As you
can see, a powerful API such as the Hacker News API gives plenty of ways to experiment with real
world data. You should make use of it to make your endeavours when learning something newmore
exciting. That’s how I learned about the empowerment that APIs provide¹¹² when learning a new
programming language or library.

Exercises:

• Read about ES6 default parameters¹¹³
• Experiment with the Hacker News API parameters¹¹⁴

¹¹²https://www.robinwieruch.de/what-is-an-api-javascript/
¹¹³https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
¹¹⁴https://hn.algolia.com/api

https://www.robinwieruch.de/what-is-an-api-javascript/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://hn.algolia.com/api
https://www.robinwieruch.de/what-is-an-api-javascript/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://hn.algolia.com/api

Getting Real with APIs 101

Client Cache

Each search submit makes a request to the Hacker News API. You might search for “redux”, followed
by “react” and eventually “redux” again. In total it makes 3 requests. But you searched for “redux”
twice and both times it took a whole asynchronous roundtrip to fetch the data. In a client-sided
cache, you would store each result. When a request to the API is made, it checks if a result is already
there and uses the cache if it is. Otherwise an API request is made to fetch the data.

To have a client cache for each result, you have to store multiple results rather than one result

in your local component state. The results object will be a map with the search term as key and the
result as value. Each result from the API will be saved by the search term (key).

At the moment, your result in the local state looks like this:

Code Playground

result: {

hits: [...],

page: 2,

}

Imagine you have made two API requests. One for the search term “redux” and another one for
“react”. The results object should look like the following:

Code Playground

results: {

redux: {

hits: [...],

page: 2,

},

react: {

hits: [...],

page: 1,

},

...

}

Let’s implement a client-side cache with React setState(). First, rename the result object to
results in the initial component state. Second, define a temporary searchKey to store each result.

Getting Real with APIs 102

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

};

...

}

...

}

The searchKey has to be set before each request is made. It reflects the searchTerm. Understanding
why we don’t use searchTerm here is a crucial part to understand before continuing with the
implementation. The searchTerm is a fluctuant variable, because it gets changed every time you type
into the search input field. We want a non fluctuant variable that determines the recent submitted
search term to the API and can be used to retrieve the correct result from the map of results. It is
a pointer to your current result in the cache, which can be used to display the current result in the
render() method.

src/App.js

componentDidMount() {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopStories(searchTerm);

}

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopStories(searchTerm);

event.preventDefault();

}

Getting Real with APIs 103

Now we will change where the result is stored to the local component state. It should store each
result by searchKey.

src/App.js

class App extends Component {

...

setSearchTopStories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

});

}

...

}

The searchKey will be used as the key to save the updated hits and page in a results map.

First, you have to retrieve the searchKey from the component state. Remember that the searchKey
gets set on componentDidMount() and onSearchSubmit().

Second, the old hits have to get merged with the new hits as before. But this time the old hits get
retrieved from the results map with the searchKey as key.

Third, a new result can be set in the results map in the state. Let’s examine the results object in
setState().

Getting Real with APIs 104

src/App.js

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

The bottom part makes sure to store the updated result by searchKey in the results map. The value
is an object with a hits and page property. The searchKey is the search term. You already learned
the [searchKey]: ... syntax. It is an ES6 computed property name. It helps you allocate values
dynamically in an object.

The upper part needs to spread all other results by searchKey in the state using the object spread
operator. Otherwise, you would lose all results that you have stored before.

Now you store all results by search term. That’s the first step to enable your cache. In the next
step, you can retrieve the result depending on the non fluctuant searchKey from your map of
results. That’s why you had to introduce the searchKey in the first place as non fluctuant variable.
Otherwise, the retrieval would be broken when you would use the fluctuant searchTerm to retrieve
the current result, because this value might change when we use the Search component.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

Getting Real with APIs 105

return (

<div className="page">

<div className="interactions">

...

</div>

<Table

list={list}

onDismiss={this.onDismiss}

/>

<div className="interactions">

<Button onClick={() => this.fetchSearchTopStories(searchKey, page + 1)}>

More

</Button>

</div>

</div>

);

}

}

Since you default to an empty list when there is no result by searchKey, you can spare the conditional
rendering for the Table component. Additionally, we need to pass the searchKey rather than the
searchTerm to the “More” button. Otherwise, your paginated fetch depends on the searchTerm value
which is fluctuant. Moreover make sure to keep the fluctuant searchTerm property for the input field
in the Search component.

The search functionality should store all results from the Hacker News API now.

Now, we can see the onDismiss()method needs improvement, as it still deals with the result object.
We want it deal with multiple results:

src/App.js

onDismiss(id) {

const { searchKey, results } = this.state;

const { hits, page } = results[searchKey];

const isNotId = item => item.objectID !== id;

const updatedHits = hits.filter(isNotId);

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

Getting Real with APIs 106

});

}

Check to make sure the “Dismiss” button is working again.

Note that nothing will stop the application from sending an API request on each search submit.
Though there might be already a result, there is no check that prevents the request, so the cache
functionality is not complete yet. It caches the results, but it doesn’t make use of them. The last step
is to prevent the API request when a result is available in the cache:

src/App.js

class App extends Component {

constructor(props) {

...

this.needsToSearchTopStories = this.needsToSearchTopStories.bind(this);

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

needsToSearchTopStories(searchTerm) {

return !this.state.results[searchTerm];

}

...

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

if (this.needsToSearchTopStories(searchTerm)) {

this.fetchSearchTopStories(searchTerm);

}

event.preventDefault();

}

...

Getting Real with APIs 107

}

Now your client only makes a request to the API once, though you searched for a term twice. Even
paginated data with several pages gets cached that way, because you always save the last page for
each result in the resultsmap. This is a powerful approach to introduce caching into an application.
The Hacker News API provides you with everything you need to cache paginated data effectively.

Getting Real with APIs 108

Error Handling

Now we’ve taken care of interactions with the Hacker News API. We’ve introduced an elegant way
to cache results from the API and make use of its paginated list functionality to fetch an endless list
of sublists of stories from the API. But no application is complete without error handling.

In this chapter, we introduce an efficient solution to add error handling for your application in case of
an erroneous API request. We have learned the necessary building block to introduce error handling
in React: local state and conditional rendering. The error is just another state, which we store in the
local state and display with conditional rendering in the component.

Now, we’ll implement it in the App component, since that’s where we fetch data from the Hacker
News API. First, introduce the error in the local state. It is initialized as null, but will be set to the
error object in case of an error.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

};

...

}

...

}

Second, use the catch block in your native fetch to store the error object in the local state by using
setState(). Every time the API request isn’t successful, the catch block is executed.

Getting Real with APIs 109

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

// be careful with the "\" which shows up in the PDF/print version of the book

// it's only a line break a should not be in the actual code

// https://github.com/the-road-to-learn-react/the-road-to-learn-react/issues/43

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => this.setState({ error }));

}

...

}

Third, retrieve the error object from your local state in the render()method, and display a message
in case of an error using React’s conditional rendering.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error

} = this.state;

...

if (error) {

return <p>Something went wrong.</p>;

}

Getting Real with APIs 110

return (

<div className="page">

...

</div>

);

}

}

If you want to test that your error handling is working, change the API URL to something non-
existent to force an error.

src/App.js

const PATH_BASE = 'https://hn.mydomain.com/api/v1';

Now you should see an error message instead of your application. It’s up to you where you want
to place the conditional rendering for the error message. In this case, the app is overridden by the
error message, but that wouldn’t be the best user experience. The remaining application would still
be visible so the user knows it’s still running:

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

Getting Real with APIs 111

) || [];

return (

<div className="page">

<div className="interactions">

...

</div>

{ error

? <div className="interactions">

<p>Something went wrong.</p>

</div>

: <Table

list={list}

onDismiss={this.onDismiss}

/>

}

...

</div>

);

}

}

Remember to revert the URL for the API to the existent one:

src/App.js

const PATH_BASE = 'https://hn.algolia.com/api/v1';

The application now has error handling in case the API request fails.

Exercises:

• Read about React’s Error Handling for Components¹¹⁵

¹¹⁵https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

Getting Real with APIs 112

Axios instead of Fetch

Before, we introduced the native fetch API to perform a request to the Hacker News platform. The
browser allows you to use this native fetch API. However, not all browsers support this, older
browsers especially. Once you start testing your application in a headless browser environment
(where there is no browser, it is mocked), there can be issues with the fetch API. There are a couple
of ways to make fetch work in older browsers (polyfills) and in tests (isomorphic-fetch¹¹⁶), but these
concepts are bit off-task for the purpose of learning React.

One alternative is to substitute the native fetch API with a stable library such as axios¹¹⁷, which
performs asynchronous requests to remote APIs. In this chapter, we will discover how to substitute
a library, a native API of the browser in this case, with another library.

Below, the native fetch API is substituted with axios. First, we install axios on the command line:

Command Line

npm install axios

Second, import axios in your App component’s file:

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import './App.css';

...

You can use axios instead of fetch(), and its usage looks almost identical to the native fetch API. It
takes the URL as argument and returns a promise. You don’t have to transform the returned response
to JSON anymore, since axios wraps the result into a data object in JavaScript. Just make sure to
adapt your code to the returned data structure:

¹¹⁶https://github.com/matthew-andrews/isomorphic-fetch
¹¹⁷https://github.com/axios/axios

https://github.com/matthew-andrews/isomorphic-fetch
https://github.com/axios/axios
https://github.com/matthew-andrews/isomorphic-fetch
https://github.com/axios/axios

Getting Real with APIs 113

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

axios(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(result => this.setSearchTopStories(result.data))

.catch(error => this.setState({ error }));

}

...

}

In this code, we call axios(), which uses an HTTP GET request by default. You can make the GET
request explicit by calling axios.get(), or you can use another HTTP method such as HTTP POST
with axios.post(). With these examples alone, we can see that axios is a powerful library to perform
requests to remote APIs. I recommend you use it instead of the native fetch API when requests
become complex, or you have to deal with promises.

There exists another improvement for the Hacker News request in the App component. Imag-
ine the component mounts when the page is rendered for the first time in the browser. In
componentDidMount() the component starts to make the request, but then the user navigates away
from the page with this rendered component. Then the App component unmounts, but there is still a
pending request from componentDidMount() lifecyclemethod. It will attempt to use this.setState()
eventually in the then() or catch() block of the promise. Youwill likely see the followingwarning(s)
on your command line, or in your browser’s developer output:

• Warning: Can only update a mounted or mounting component. This usually means you called
setState, replaceState, or forceUpdate on an unmounted component. This is a no-op.

• Warning: Canâ€™t call setState (or forceUpdate) on an unmounted component. This is a no-
op, but it indicates a memory leak in your application. To fix, cancel all subscriptions and
asynchronous tasks in the componentWillUnmount method.

If you encounter one of them in your browser’s developer tools, checkout this walkthrough on how
to prevent memory leaks in React¹¹⁸. It isn’t too important for starting out with React, but I have
seen many React beginners being confused about this warning.

This chapter has shown you how you can replace one library with another in React. If you run into
any issues, you can use the vast library ecosystem in JavaScript to find a solution.

¹¹⁸https://www.robinwieruch.de/react-warning-cant-call-setstate-on-an-unmounted-component/

https://www.robinwieruch.de/react-warning-cant-call-setstate-on-an-unmounted-component/
https://www.robinwieruch.de/react-warning-cant-call-setstate-on-an-unmounted-component/
https://www.robinwieruch.de/react-warning-cant-call-setstate-on-an-unmounted-component/

Getting Real with APIs 114

Exercises:

• Read about why frameworks matter¹¹⁹

¹¹⁹https://www.robinwieruch.de/why-frameworks-matter/

https://www.robinwieruch.de/why-frameworks-matter/
https://www.robinwieruch.de/why-frameworks-matter/

Getting Real with APIs 115

Now you’ve learned to interact with an API in React! Let’s recap the last chapter:

• React
– ES6 class component lifecycle methods for different use cases
– componentDidMount() for API interactions
– Conditional renderings
– Synthetic events on forms
– Error handling
– Preventing this.setState in unmounted components

• ES6 and beyond
– Template strings to compose strings
– Spread operator for immutable data structures
– Computed property names
– Class fields

• General
– Hacker News API interaction
– Native fetch browser API
– Client and server-side search
– Pagination of data
– Client-side caching
– Axios as an alternative for the native fetch API

Again, it makes sense to take a break, internalize the lessons and apply them on your own.
Experiment with the parameters for the API endpoint to query different results. You can find the
source code in the official repository¹²⁰.

¹²⁰https://github.com/the-road-to-learn-react/hackernews-client/tree/5.3.1

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.3.1
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.3.1

Code Organization and Testing
The chapter will focus on keeping code organized in a scaling application, so we will cover the best
practices for structuring your folders and files. We will also cover testing, an important practice to
keep source code robust, as well as useful tools for debugging a React application. This chapter will
step back from the practical application for a moment, so we can cover these topics in detail before
moving on.

Code Organization and Testing 117

ES6 Modules: Import and Export

In JavaScript ES6, you can import and export functionalities from modules. These can be functions,
classes, components, constants, essentially anything you can assign to a variable. Modules can be
single files or whole folders with one index file as entry point.

After we bootstrapped our application with create-react-app at the beginning, we already used
several import and export statements in the initial files. The import and export statements help you
to share code across multiple files. Historically there were already several solutions for this in the
JavaScript environment, but it was a mess because there wasn’t standardized method of performing
this task. JavaScript ES6 added it as a native behavior eventually.

These statements embrace code splitting, where we distribute code across multiple files to keep it
reusable and maintainable. The former is true because we can import a piece of code into multiple
files. The latter is true because there is only one source where you maintain the piece of code.

We also want to think about code encapsulation, since not every functionality needs to be exported
from a file. Some of these functionalities should only be used in files where they have been defined.
File exports are basically a public API to a file, where only the exported functionalities are available
to be reused elsewhere. This follows the best practice of encapsulation.

The following examples showcase the statements by sharing one or multiple variables across two
files. In the end, the approach can scale to multiple files and could share more than simple variables.

The act of exporting one or multiple variables is called a named export:

Code Playground: file1.js

const firstname = 'Robin';

const lastname = 'Wieruch';

export { firstname, lastname };

And import them in another file with a relative path to the first file.

Code Playground: file2.js

import { firstname, lastname } from './file1.js';

console.log(firstname);

// output: Robin

You can also import all exported variables from another file as one object.

Code Organization and Testing 118

Code Playground: file2.js

import * as person from './file1.js';

console.log(person.firstname);

// output: Robin

Imports can have aliases, which are necessary when we import functionalities from multiple files
that have the same named export.

Code Playground: file2.js

import { firstname as username } from './file1.js';

console.log(username);

// output: Robin

There is also the default statement, which can be used for a few cases:

• to export and import a single functionality
• to highlight the main functionality of the exported API of a module
• to have a fallback import functionality

Code Playground: file1.js

const robin = {

firstname: 'Robin',

lastname: 'Wieruch',

};

export default robin;

You have to leave out the curly braces to import the default export.

Code Playground: file2.js

import developer from './file1.js';

console.log(developer);

// output: { firstname: 'Robin', lastname: 'Wieruch' }

The import name can differ from the exported default name, and it can be used with the named
export and import statements:

Code Organization and Testing 119

Code Playground: file1.js

const firstname = 'Robin';

const lastname = 'Wieruch';

const person = {

firstname,

lastname,

};

export {

firstname,

lastname,

};

export default person;

Import the default or the named exports in another file:

Code Playground: file2.js

import developer, { firstname, lastname } from './file1.js';

console.log(developer);

// output: { firstname: 'Robin', lastname: 'Wieruch' }

console.log(firstname, lastname);

// output: Robin Wieruch

You can spare the extra lines, and export the variables directly for named exports.

Code Playground: file1.js

export const firstname = 'Robin';

export const lastname = 'Wieruch';

These are themain functionalities for ES6modules. They help you to organize your code, to maintain
it, and to design reusable module APIs. You can also export and import functionalities to test them
which you will do in a later chapter.

Exercises:

• Read about ES6 import¹²¹
• Read about ES6 export¹²²

¹²¹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
¹²²https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

Code Organization and Testing 120

Code Organization with ES6 Modules

You might wonder why we didn’t follow the best practices of putting components into different
files for the src/App.js file. We already have multiple components in the file that can be defined in
their own files/folders (modules). For the sake of learning React, it is practical to keep these items in
one place. Once your React application grows, you should consider splitting these components into
multiple modules so it can scale properly.

In the following, I propose several module structures you can apply. You can apply them as an
exercise later, but we will continue developing our app with the src/App.js file to keep things simple.

Here is one possible module structure:

Folder Structure

src/

index.js

index.css

App.js

App.test.js

App.css

Button.js

Button.test.js

Button.css

Table.js

Table.test.js

Table.css

Search.js

Search.test.js

Search.css

This one separates the components into their own files, but it doesn’t look too promising. You can
see a lot of naming duplications, and only the file extension differs. Another module structure could
be:

Folder Structure

src/

index.js

index.css

App/

index.js

test.js

index.css

Button/

Code Organization and Testing 121

index.js

test.js

index.css

Table/

index.js

test.js

index.css

Search/

index.js

test.js

index.css

Now it looks cleaner than before. The index naming of a file describes it as an entry point file to the
folder. It is just a common naming convention, but you can use your own naming as well. In this
module structure, a component is defined by its component declaration in the JavaScript file, but
also by its style and tests. If you have trouble finding your components this way while searching for
them in your editor/IDE, search for paths rather than files (e.g. search for “Table index”).

Another step is extracting the constant variables from the App component, which were used to
compose the Hacker News API URL.

Folder Structure

src/

index.js

index.css

constants/

index.js

components/

App/

index.js

test.js

index.css

Button/

index.js

test.js

index.css

...

Naturally, the modules would split up into src/constants/ and src/components/. The src/constants/in-
dex.js file could look like the following:

Code Organization and Testing 122

Code Playground: src/constants/index.js

export const DEFAULT_QUERY = 'redux';

export const DEFAULT_HPP = '100';

export const PATH_BASE = 'https://hn.algolia.com/api/v1';

export const PATH_SEARCH = '/search';

export const PARAM_SEARCH = 'query=';

export const PARAM_PAGE = 'page=';

export const PARAM_HPP = 'hitsPerPage=';

The App/index.js file could import these variables in order to use them.

Code Playground: src/components/App/index.js

import {

DEFAULT_QUERY,

DEFAULT_HPP,

PATH_BASE,

PATH_SEARCH,

PARAM_SEARCH,

PARAM_PAGE,

PARAM_HPP,

} from '../../constants/index.js';

...

When you use the index.js naming convention, you can omit the filename from the relative path.

Code Playground: src/components/App/index.js

import {

DEFAULT_QUERY,

DEFAULT_HPP,

PATH_BASE,

PATH_SEARCH,

PARAM_SEARCH,

PARAM_PAGE,

PARAM_HPP,

} from '../../constants';

...

The index.js file naming is convention was introduced in the Node.js world, where the index file
is the entry point to a module. It describes the public API to the module. External modules are
only allowed to use the index.js file to import shared code from the module. Consider the following
module structure to demonstrate it:

Code Organization and Testing 123

Folder Structure

src/

index.js

App/

index.js

Buttons/

index.js

SubmitButton.js

SaveButton.js

CancelButton.js

The Buttons/ folder has multiple button components defined in its distinct files. Each file can export

default the specific component, making it available to Buttons/index.js. The Buttons/index.js file
imports all different button representations and exports them as public module API.

Code Playground: src/Buttons/index.js

import SubmitButton from './SubmitButton';

import SaveButton from './SaveButton';

import CancelButton from './CancelButton';

export {

SubmitButton,

SaveButton,

CancelButton,

};

Now the src/App/index.js can import the buttons from the public module API located in the index.js
file.

Code Playground: src/App/index.js

import {

SubmitButton,

SaveButton,

CancelButton

} from '../Buttons';

However, it can be seen as bad practice to reach into other files than the index.js in the module, as
it breaks the rules of encapsulation.

Code Organization and Testing 124

Code Playground: src/App/index.js

// bad practice, don't do it

import SubmitButton from '../Buttons/SubmitButton';

We refactored the source code in a module with the constraints of encapsulation. Again, we’ll keep
things simple in this book, but you should always refactor your source code to keep it clean.

Exercises:

• Refactor your src/App.js file into multiple component modules when you finished the book

Code Organization and Testing 125

Snapshot Tests with Jest

Testing source code is essential to programming, and should be seen as mandatory. We want to keep
the quality of your code high and make sure everything works before using it in production. We
will use the testing pyramid as our guide.

The testing pyramid includes end-to-end tests, integration tests, and unit tests. A unit test is for an
isolated and small block of code, such a single function. However, sometimes units work well in
isolation but not in combination with other units, so they need to be tested as a group. That’s where
integration tests can help us figure out if units work well together. An end-to-end test is a simulation
of a real-life scenario, such as the automated setup of a browser simulating the login flow in a web
application. Where unit tests are fast and easy to write and maintain, end-to-end tests are at the
opposite of the spectrum.

We want to have many unit tests covering the isolated functions. After that, we can use several
integration tests tomake sure themost important functionswork in combination as expected. Finally,
we may need a few end-to-end tests to simulate critical scenarios.

The foundation for testing in React are component tests, generalized partly as unit tests and partly
as snapshot tests. Unit tests for our components will be covered in the next chapter with a library
called Enzyme. In this section, we focus on snapshot tests, using Jest¹²³.

Jest is a JavaScript testing framework used by Facebook. It is used for component tests by the React
community. Fortunately, create-react-app already comes with Jest, so you don’t need to set it up.

Before you can test your first components, you have to export them from your src/App.js file.
Afterward, you can test them in a different file.

src/App.js

...

class App extends Component {

...

}

...

export default App;

export {

Button,

Search,

Table,

};

¹²³https://jestjs.io/

https://jestjs.io/
https://jestjs.io/

Code Organization and Testing 126

In your App.test.js file, you will find the first test that came with create-react-app. It verifies the App
component will render without errors.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

ReactDOM.unmountComponentAtNode(div);

});

The “it”-block describes one test case. It comes with a test description, and when you test it, it can
either succeed or fail. Furthermore, you could wrap it into a “describe”-block that defines your test
suite. A test suite could include a bunch of the “it”-blocks for one specific component. You will see
“describe”-blocks later. Both blocks are used to separate and organize your test cases.

Note that the it function is acknowledged in the JavaScript community as the function where you
run a single test. However, in Jest it is often found as an alias test function.

You can run the test cases using the interactive create-react-app test script on the command line.
You will get the output for all test cases on your command line interface.

Command Line

npm test

Jest enables you towrite snapshot tests. These testsmake a snapshot of your rendered component and
runs it against future snapshots. When a future snapshot changes, you will get notified in the test.
You can either accept the snapshot change, because you changed the component implementation
on purpose, or deny the change and investigate for the error. It complements unit tests very well,
because you only test the differences of the rendered output. It doesn’t add big maintenance costs
since you can accept snapshots for intentional changes.

Jest stores snapshots in a folder so it can validate the diff against a future snapshot. This also lets
use share snapshots across teams when having version control such as git in place.

Before writing your first snapshot test with Jest, you have to install its utility library:

Code Organization and Testing 127

Command Line

npm install --save-dev react-test-renderer

Now you can extend the App component test with your first snapshot test. First, import the new
functionality from the node package and wrap your previous “it”-block for the App component into
a descriptive “describe”-block. In this case, the test suite is only for the App component.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App from './App';

describe('App', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

ReactDOM.unmountComponentAtNode(div);

});

});

Now you can implement your first snapshot test by using a “test”-block:

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App from './App';

describe('App', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

ReactDOM.unmountComponentAtNode(div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

Code Organization and Testing 128

<App />

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Run your tests again and observe how they succeed or fail. Once you change the output of the
render block in your App component, the snapshot test should fail. Then you can decide to update
the snapshot or investigate in your App component.

The renderer.create() function creates a snapshot of your App component. It renders it virtually,
and then stores the DOM into a snapshot. Afterward, the snapshot is expected to match the previous
version from the last test. This is how we make sure the DOM stays the same and doesn’t change
anything by accident.

Let’s add more tests for our independent components. First, the Search component:

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App, { Search } from './App';

...

describe('Search', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<Search>Search</Search>, div);

ReactDOM.unmountComponentAtNode(div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<Search>Search</Search>

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Code Organization and Testing 129

The Search component has two tests similar to the App component. The first test simply renders
the Search component to the DOM and verifies that there is no error during the rendering process.
If there would be an error, the test would break even though there isn’t any assertion (e.g. expect,
match, equal) in the test block. The second snapshot test is used to store a snapshot of the rendered
component and to run it against a previous snapshot. It fails when the snapshot has changed.

Second, you can test the Button component whereas the same test rules as in the Search component
apply.

src/App.test.js

...

import App, { Search, Button } from './App';

...

describe('Button', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<Button>Give Me More</Button>, div);

ReactDOM.unmountComponentAtNode(div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<Button>Give Me More</Button>

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Finally, the Table component that you can pass a bunch of initial props to render it with a sample
list.

Code Organization and Testing 130

src/App.test.js

...

import App, { Search, Button, Table } from './App';

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

};

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<Table { ...props } />, div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<Table { ...props } />

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Snapshot tests usually stay pretty basic. You only want to make sure the component doesn’t change
its output. Once it does, you have to decide if you accept the changes, otherwise you have to fix the
component.

Exercises:

• See how a snapshot test fails once you change your component’s return value in the render()
method
– Accept or deny the snapshot change(s)

• Keep your snapshots tests up to date when the implementation of components change in next
chapters

• Read about Jest in React¹²⁴

¹²⁴https://jestjs.io/docs/en/tutorial-react

https://jestjs.io/docs/en/tutorial-react
https://jestjs.io/docs/en/tutorial-react

Code Organization and Testing 131

Unit Tests with Enzyme

Enzyme¹²⁵ is a testing utility by Airbnb to assert, manipulate, and traverse React components. It is
used to conduct unit tests to complement snapshot tests in React. First we have to install it along
with its extension, since it doesn’t come with create-react-app.

Command Line

npm install --save-dev enzyme react-addons-test-utils enzyme-adapter-react-16

Second, we include it in the test setup and we initialize its adapter.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import Enzyme from 'enzyme';

import Adapter from 'enzyme-adapter-react-16';

import App, { Search, Button, Table } from './App';

Enzyme.configure({ adapter: new Adapter() });

Now you can write your first unit test in the Table “describe”-block. Youwill use shallow() to render
your component and assert that the Table was passed two items. The assertion simply checks if the
element has two elements with the class table-row.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import Enzyme, { shallow } from 'enzyme';

import Adapter from 'enzyme-adapter-react-16';

import App, { Search, Button, Table } from './App';

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

¹²⁵https://github.com/airbnb/enzyme

https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme

Code Organization and Testing 132

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

};

...

it('shows two items in list', () => {

const element = shallow(

<Table { ...props } />

);

expect(element.find('.table-row').length).toBe(2);

});

});

Shallow renders the component without its child components, so you can dedicate the test to one
component.

Enzyme has three rendering mechanisms in its API. You already know shallow(), but there is also
mount() and render(). Both instantiate instances of the parent component and all child components.
mount() gives you access to the component lifecycle methods. These are the rules of them as to when
to use each mechanism:

• Always begin with a shallow test
• If componentDidMount() or componentDidUpdate() should be tested, use mount()
• If you want to test component lifecycle and children behavior, use mount()
• If you want to test a component’s children rendering with less overhead than mount() and you
are not interested in lifecycle methods, use render()

Continue to unit test your components, but be sure to keep the tests simple and maintainable.
Otherwise you will have to refactor them once you change your components. This is one the main
reason Facebook introduced snapshot tests with Jest.

Exercises:

• Write a unit test with Enzyme for your Button component
• Keep your unit tests up to date during the following chapters
• Read about Enzyme and its rendering API¹²⁶
• Read about testing React applications¹²⁷

¹²⁶https://github.com/airbnb/enzyme
¹²⁷https://www.robinwieruch.de/react-testing-tutorial

https://github.com/airbnb/enzyme
https://www.robinwieruch.de/react-testing-tutorial
https://github.com/airbnb/enzyme
https://www.robinwieruch.de/react-testing-tutorial

Code Organization and Testing 133

Component Interface with PropTypes

TypeScript¹²⁸ and Flow¹²⁹ are used to introduce a type system to JavaScript. A typed language is less
error prone because the code gets validated based on its program text. Editors and other utilities can
catch these errors before the program runs.

In the book, you will not introduce Flow or TypeScript, but another useful way to check your types
in components: React comes with a built-in type checker to prevent bugs. You can use PropTypes
to describe your component interface. All the props passed from a parent component to a child get
validated based on the PropTypes interface assigned to the child.

This section will show you to make components type safe with PropTypes. I will omit the changes
for the following chapters, since they add unnecessary code refactorings, but you should update
them along the way to keep your components interface type safe.

First, install a separate package for React:

Command Line

npm install prop-types

Now, you can import the PropTypes.

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import PropTypes from 'prop-types';

Let’s start to assign a props interface to the components:

src/App.js

const Button = ({

onClick,

className = '',

children,

}) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

¹²⁸https://www.typescriptlang.org/
¹²⁹https://flowtype.org/

https://www.typescriptlang.org/
https://flowtype.org/
https://www.typescriptlang.org/
https://flowtype.org/

Code Organization and Testing 134

</button>

Button.propTypes = {

onClick: PropTypes.func,

className: PropTypes.string,

children: PropTypes.node,

};

Essentially, we want to take every argument from the function signature and assign a PropType to
it. The basic PropTypes for primitives and complex objects are:

• PropTypes.array
• PropTypes.bool
• PropTypes.func
• PropTypes.number
• PropTypes.object
• PropTypes.string

There are two more PropTypes that can define a renderable fragment (node), e.g. a string, and a
React element:

• PropTypes.node
• PropTypes.element

You already used the node PropType for the Button component. There are more PropType definitions
in the official React documentation.

At the moment, all the defined PropTypes for the Button are optional. The parameters can be null
or undefined. But for several props you want to enforce that they be defined. To do this, we make it
a requirement that these props are passed to the component.

src/App.js

Button.propTypes = {

onClick: PropTypes.func.isRequired,

className: PropTypes.string,

children: PropTypes.node.isRequired,

};

The className is not required, because it can default to an empty string. Next you will define a
PropType interface for the Table component:

Code Organization and Testing 135

src/App.js

Table.propTypes = {

list: PropTypes.array.isRequired,

onDismiss: PropTypes.func.isRequired,

};

You can define the content of an array PropType more explicitly:

src/App.js

Table.propTypes = {

list: PropTypes.arrayOf(

PropTypes.shape({

objectID: PropTypes.string.isRequired,

author: PropTypes.string,

url: PropTypes.string,

num_comments: PropTypes.number,

points: PropTypes.number,

})

).isRequired,

onDismiss: PropTypes.func.isRequired,

};

Only the objectID is required, because some of the code depends on it. The other properties are only
displayed, so they are not required. Moreover you cannot be sure the Hacker News API always has
a defined property for each object in the array.

You can also define default props in your component. The className property has an ES6 default
parameter in the component signature:

src/App.js

const Button = ({

onClick,

className = '',

children

}) =>

...

Replace it with the internal React default prop:

Code Organization and Testing 136

src/App.js

const Button = ({

onClick,

className,

children

}) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

Button.defaultProps = {

className: '',

};

Like the ES6 default parameter, the default prop ensures the property is set to a default value when
the parent component doesn’t specify it. The PropType type check happens after the default prop is
evaluated.

If you run your tests again, you might see PropType errors for your components on your command
line. It happens when we don’t define all props for components in the tests that are required in the
PropType definition. The tests themselves all pass correctly though. Make sure to pass all required
props to the components in your tests to avoid these errors.

Exercises:

• Define the PropType interface for the Search component
• Add and update the PropType interfaces when you add and update components in the next
chapters

• Read about React PropTypes¹³⁰

¹³⁰https://reactjs.org/docs/typechecking-with-proptypes.html

https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html

Code Organization and Testing 137

Debugging with React Developer Tools

React Developer Tools¹³¹ lets you inspect the React components hierarchy, props and state. It comes
as a browser extension for Chrome and Firefox and as a standalone app that works with other
environments. Once installed, the extension icon will light up on websites using React. On such
pages, you will see a tab called “React” in your browser’s developer tools.

Let’s try it on our Hacker News application. On most browsers, a quick way to bring the dev tools
up is to right-click on the page and than hit “Inspect”. Do it when your application is loaded, then
click on the “React” tab. You should see its elements hierarchy, being <App> the root element. If you
expand it, you will find instances of your <Search>, <Table> and <Button> components, as well.

The extension shows on the side pane the component’s state and props for the selected element.
For instance, if you click on <App>, you will see that it has no props, but it already has a state. A
very straightforward debugging technique is monitoring your application’s state changes from user
interaction.

First, check the “Highlight Updates” option, usually above the elements tree. Second, type a different
search term in the application’s input field. Only searchTerm will be changed in the component’s
state. We already knew that would happen, but now we can see it working as planned.

Finally, press the “Search” button. The searchKey state will immediately changes to same value as
searchTerm, and then the response object is added to results. The asynchronous nature of your
code is now visible.

If you right-click on any element, a dropdown menu will show several useful options. For instance,
you could copy the element’s props or name, find the corresponding DOM node, or jump to the
application’s source code in the browser. The last option is very useful for inserting breakpoints and
debugging your JavaScript functions.

Exercises:

• Install the React Developer Tools¹³² extension on your favorite browser
– Run your Hacker News Clone application and inspect it using the extension
– Experiment with state and props changes
– Watch what happens when you trigger an asynchronous request
– Perform several requests, including repeated ones. Watch the cache mechanism working

• Read about how to debug your JavaScript functions in the browser¹³³
• Read about (and use) the React Profiler¹³⁴

You have learned how to organize and test React code! Let’s recap the last chapter:

¹³¹https://github.com/facebook/react-devtools
¹³²https://github.com/facebook/react-devtools
¹³³https://developers.google.com/web/tools/chrome-devtools/javascript/
¹³⁴https://reactjs.org/blog/2018/09/10/introducing-the-react-profiler.html

https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://developers.google.com/web/tools/chrome-devtools/javascript/
https://reactjs.org/blog/2018/09/10/introducing-the-react-profiler.html
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://developers.google.com/web/tools/chrome-devtools/javascript/
https://reactjs.org/blog/2018/09/10/introducing-the-react-profiler.html

Code Organization and Testing 138

• React
– PropTypes let you define type checks for components
– Jest allows you to write snapshot tests for your components
– Enzyme allows you to write unit tests for your components
– React Developer Tools is a helpful debugging tool

• ES6
– import and export statements help you to organize your code

• General
– code organization allows you to scale your application with best practices

You can find the source code in the official repository¹³⁵.

¹³⁵https://github.com/the-road-to-learn-react/hackernews-client/tree/5.4

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.4
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.4

Advanced React Components
This chapter focuses on implementing advanced React components. Youwill learn how to implement
higher-order components, and we will dive into more advanced topics in React.

Advanced React Components 140

Ref a DOM Element

Sometimes you need to interact with your DOM nodes in React. The ref attribute gives you access
to a node in your elements. That is usually an anti pattern in React, because you should use its
declarative way of doing things and its unidirectional data flow. We learned about it when we
introduced the first search input field, but there are certain cases where you need access to the
DOM node. The official documentation mentions three:

• to use the DOM API (focus, media playback etc.)
• to invoke imperative DOM node animations
• to integrate with a third-party library that needs the DOM node (e.g. D3.js¹³⁶)

We’ll use the Search component as an example. When the application renders for the first time, the
input field should be focused. This is one case where we need access to the DOM API. The ref

attribute can be used in both functional stateless components and ES6 class components. In this
example, we need a lifecycle method, so the approach is showcased using the ref attribute with an
ES6 class component.

The initial step is to refactor the functional stateless component to an ES6 class component.

src/App.js

class Search extends Component {

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

/>

<button type="submit">

{children}

</button>

</form>

¹³⁶https://d3js.org/

https://d3js.org/
https://d3js.org/

Advanced React Components 141

);

}

}

The this object of an ES6 class component helps us to reference the DOM element with the ref

attribute.

src/App.js

class Search extends Component {

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={el => this.input = el}

/>

<button type="submit">

{children}

</button>

</form>

);

}

}

Now you can focus the input field when the component mounted by using the this object, the
appropriate lifecycle method, and the DOM API.

Advanced React Components 142

src/App.js

class Search extends Component {

componentDidMount() {

if (this.input) {

this.input.focus();

}

}

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={el => this.input = el}

/>

<button type="submit">

{children}

</button>

</form>

);

}

}

The input field should be focused when the application renders. We access to the ref in a functional
stateless component without the this object using the following functional stateless component:

Advanced React Components 143

src/App.js

const Search = ({

value,

onChange,

onSubmit,

children

}) => {

let input;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={el => this.input = el}

/>

<button type="submit">

{children}

</button>

</form>

);

}

Now we can access the input DOM element. In our case it wouldn’t help much since there’s no
lifecycle method in a functional stateless component to trigger the focus. So we are not going to
make use of the input variable here. In the future, though, you may encounter cases where it makes
sense to use a functional stateless component with the ref attribute.

Exercises

• Read about the usage of the ref attribute in React¹³⁷
• Read about the ref attribute in general in React¹³⁸

¹³⁷https://www.robinwieruch.de/react-ref-attribute-dom-node/
¹³⁸https://reactjs.org/docs/refs-and-the-dom.html

https://www.robinwieruch.de/react-ref-attribute-dom-node/
https://reactjs.org/docs/refs-and-the-dom.html
https://www.robinwieruch.de/react-ref-attribute-dom-node/
https://reactjs.org/docs/refs-and-the-dom.html

Advanced React Components 144

Loading …

Now we get back to the application, where we’ll show a loading indicator when a search request
submits to the Hacker News API. The request is asynchronous, so you should show your user
feedback that something is happening. Let’s define a reusable Loading component in your src/App.js
file.

src/App.js

const Loading = () =>

<div>Loading ...</div>

Now we need a property to store the loading state. Based on the loading state, we can decide to
show the Loading component later.

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

};

...

}

...

}

The initial value of that isLoading property is false. We don’t load anything before the App
component is mounted. When the request is made, the loading state is set to true. The request will
succeed eventually, and you can set the loading state to false.

Advanced React Components 145

src/App.js

class App extends Component {

...

setSearchTopStories(result) {

...

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

});

}

fetchSearchTopStories(searchTerm, page = 0) {

this.setState({ isLoading: true });

axios(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(result => this._isMounted && this.setSearchTopStories(result.data))

.catch(error => this._isMounted && this.setState({ error }));

}

...

}

In the last step, we used the Loading component in the App component. A conditional rendering
based on the loading state will decide whether to show a Loading component or the Button
component. The latter is the button to fetch more data.

Advanced React Components 146

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading

} = this.state;

...

return (

<div className="page">

...

<div className="interactions">

{ isLoading

? <Loading />

: <Button

onClick={() => this.fetchSearchTopStories(searchKey, page + 1)}

>

More

</Button>

}

</div>

</div>

);

}

}

Initially, the Loading component will show when you start your application, because you make a
request on componentDidMount(). There is no Table component, because the list is empty. When the
response returns from the Hacker News API, the result is shown, the loading state is set to false, and
the Loading component disappears. Instead, the “More” button to fetch more data appears. Once
you fetch more data, the button will disappear again and the Loading component will appear.

Advanced React Components 147

Exercises:

• Use a library such as Font Awesome¹³⁹ to show a loading icon instead of the “Loading …” text

¹³⁹https://fontawesome.com/

https://fontawesome.com/
https://fontawesome.com/

Advanced React Components 148

Higher-Order Components

Higher-order components (HOC) are an advanced concept in React. HOCs are an equivalent to
higher-order functions. They take any input, usually a component, but also optional arguments,
and return a component as output. The returned component is an enhanced version of the input
component, and it can be used in your JSX.

HOCs are used for different use cases. They can prepare properties, manage state, or alter the
representation of a component. One case is to use a HOC as a helper for a conditional rendering.
Imagine you have a List component that renders a list of items or nothing, because the list is empty
or null. The HOC could shield away that the list would render nothing when there is no list. On the
other hand, the plain List component doesn’t need to bother anymore about an non existent list, as
it only cares about rendering the list.

Let’s do a simple HOC that takes a component as input and returns a component. You can place it
in your src/App.js file.

src/App.js

function withFoo(Component) {

return function(props) {

return <Component { ...props } />;

}

}

It is a useful convention to prefix a HOC with with. Since you are using JavaScript ES6, you can
express the HOC better with an ES6 arrow function.

src/App.js

const withEnhancement = (Component) => (props) =>

<Component { ...props } />

In our example, the input component stays the same as the output, so nothing happens. The output
component should show the Loading component when the loading state is true, otherwise it should
show the input component. A conditional rendering is a great use case for an HOC.

src/App.js

const withLoading = (Component) => (props) =>

props.isLoading

? <Loading />

: <Component { ...props } />

Advanced React Components 149

Based on the loading property, you can apply a conditional rendering. The function will return the
Loading component or the input component. In general, it can be very efficient to spread an object
like the props object in the previous example as input for a component. See the difference in the
following code snippet:

Code Playground

// before you would have to destructure the props before passing them

const { firstname, lastname } = props;

<UserProfile firstname={firstname} lastname={lastname} />

// but you can use the object spread operator to pass all object properties

<UserProfile { ...props } />

We passed all the props including the isLoading property by spreading the object into the input
component. The input component may not care about the isLoading property. You can use the ES6
rest destructuring to avoid it:

src/App.js

const withLoading = (Component) => ({ isLoading, ...rest }) =>

isLoading

? <Loading />

: <Component { ...rest } />

It takes one property out of the object, but keeps the remaining object, which also works with
multiple properties. More can be read about it in Mozilla’s destructuring assignment¹⁴⁰.

Now you can use the HOC in JSX. Maybe you want to show either the “More” button or the Loading
component. The Loading component is already encapsulated in the HOC, but an input component
is missing. For showing either a Button component or a Loading component, the Button is the input
component of the HOC. The enhanced output component is a ButtonWithLoading component.

src/App.js

const Button = ({

onClick,

className = '',

children,

}) =>

<button

onClick={onClick}

className={className}

type="button"

¹⁴⁰https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Advanced React Components 150

>

{children}

</button>

const Loading = () =>

<div>Loading ...</div>

const withLoading = (Component) => ({ isLoading, ...rest }) =>

isLoading

? <Loading />

: <Component { ...rest } />

const ButtonWithLoading = withLoading(Button);

Everything is defined now. As a last step, you have to use the ButtonWithLoading component, which
receives the loading state as an additional property. While the HOC consumes the loading property,
all other props get passed to the Button component.

src/App.js
class App extends Component {

...

render() {

...

return (

<div className="page">

...

<div className="interactions">

<ButtonWithLoading

isLoading={isLoading}

onClick={() => this.fetchSearchTopStories(searchKey, page + 1)}

>

More

</ButtonWithLoading>

</div>

</div>

);

}

}

Note that when you run your tests again, your snapshot test for the App component fails. The diff
might look like the following on the command line:

Advanced React Components 151

Command Line

- <button

- className=""

- onClick={[Function]}

- type="button"

- >

- More

- </button>

+ <div>

+ Loading ...

+ </div>

You can either fix the component now, when you think there is something wrong about it, or can
accept the new snapshot of it. Because you introduced the Loading component in this chapter, you
can accept the altered snapshot test on the command line in the interactive test.

Higher-order components are an advanced pattern in React. They have multiple purposes: improved
reusability of components, greater abstraction, composability of components, and manipulations of
props, state and view. I encourage you to read gentle introduction to higher-order components¹⁴¹. It
gives you another approach to learn them, shows you an elegant way to use them in a functional
programming way, and solves the problem of conditional rendering with higher-order components.

Exercises:

• Read a gentle introduction to higher-order components¹⁴²
• Experiment with the HOC you have created
• Think about a use case where another HOC would make sense

– Implement the HOC, if there is a use case

¹⁴¹https://www.robinwieruch.de/gentle-introduction-higher-order-components/
¹⁴²https://www.robinwieruch.de/gentle-introduction-higher-order-components/

https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/

Advanced React Components 152

Advanced Sorting

We implemented a client and server-side search interaction earlier. Since you have a Table
component, it makes sense to enhance it with advanced interactions. Next, we’ll introduce a sort
functionality for each column by using the column headers of the Table.

It is possible to write your own sort function, but I prefer to use a utility library like Lodash¹⁴³ for
these cases. There are other options, but we’ll install Lodash for our sort function:

Command Line

npm install lodash

Now we import the sort functionality of Lodash in your src/App.js file:

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import { sortBy } from 'lodash';

import './App.css';

Now we have several columns in Table: title, author, comments and points columns. You can define
sort functions where each takes a list and returns a list of items sorted by a specific property.
Additionally, you will need a default sort function that doesn’t sort, but returns the unsorted list.
This will be the initial state.

src/App.js

...

const SORTS = {

NONE: list => list,

TITLE: list => sortBy(list, 'title'),

AUTHOR: list => sortBy(list, 'author'),

COMMENTS: list => sortBy(list, 'num_comments').reverse(),

POINTS: list => sortBy(list, 'points').reverse(),

};

class App extends Component {

...

}

...

¹⁴³https://lodash.com/

https://lodash.com/
https://lodash.com/

Advanced React Components 153

Two of the sort functions return a reversed list. That’s to see the items with the highest comments
and points, rather than the items with the lowest counts when the list is sorted for the first time.

The SORTS object allows you to reference any sort function now.

Again, the App component is responsible for storing the state of the sort. The initial state will be the
default sort function, which doesn’t sort at all and returns the input list as output.

src/App.js

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

sortKey: 'NONE',

};

Once we choose a different sortKey, like the AUTHOR key, we sort the list with the appropriate sort
function from the SORTS object.

Now we define a new class method in App component that sets a sortKey to the local component
state, then sortKey can be used to retrieve the sorting function to apply it to the list:

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

...

this.needsToSearchTopStories = this.needsToSearchTopStories.bind(this);

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

this.onSort = this.onSort.bind(this);

}

...

onSort(sortKey) {

Advanced React Components 154

this.setState({ sortKey });

}

...

}

The next step is to pass the method and sortKey to the Table component.

src/App.js
class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading,

sortKey

} = this.state;

...

return (

<div className="page">

...

<Table

list={list}

sortKey={sortKey}

onSort={this.onSort}

onDismiss={this.onDismiss}

/>

...

</div>

);

}

}

The Table component is responsible for sorting the list. It takes one of the SORT functions by sortKey

and passes the list as input, after which it keeps mapping over the sorted list.

Advanced React Components 155

src/App.js

const Table = ({

list,

sortKey,

onSort,

onDismiss

}) =>

<div className="table">

{SORTS[sortKey](list).map(item =>

<div key={item.objectID} className="table-row">

...

</div>

)}

</div>

In theory, the list should get sorted by one of the functions. But the default sort is set to NONE, so
nothing is sorted yet, as nothing executes the onSort() method to change the sortKey. We extend
the Table with a row of column headers that use Sort components in columns to sort each column:

src/App.js

const Table = ({

list,

sortKey,

onSort,

onDismiss

}) =>

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={onSort}

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

onSort={onSort}

>

Author

Advanced React Components 156

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={onSort}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={onSort}

>

Points

</Sort>

Archive

</div>

{SORTS[sortKey](list).map(item =>

...

)}

</div>

Each Sort component gets a specific sortKey and the general onSort() function. Internally, it calls
the method with the sortKey to set the specific key.

src/App.js

const Sort = ({ sortKey, onSort, children }) =>

<Button onClick={() => onSort(sortKey)}>

{children}

</Button>

As you can see, the Sort component reuses your common Button component. On a button click, each
individual passed sortKey is set by the onSort() method, so the list is sorted when column headers
are selected.

Now we’ll improve the look of the button in the column header. Let’s give it a proper className:

Advanced React Components 157

src/App.js

const Sort = ({ sortKey, onSort, children }) =>

<Button

onClick={() => onSort(sortKey)}

className="button-inline"

>

{children}

</Button>

This was done to improve the UI. The next goal is to implement a reverse sort. The list should
perform a reverse sort once you click a Sort component twice. First, you need to define the reverse
state with a boolean. The sort can be either reversed or non-reversed.

src/App.js

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

sortKey: 'NONE',

isSortReverse: false,

};

Now in your sort method, you can evaluate if the list is reverse sorted. It is reverse if the sortKey in
the state is the same as the incoming sortKey and the reverse state is not already set to true.

src/App.js

onSort(sortKey) {

const isSortReverse = this.state.sortKey === sortKey && !this.state.isSortReverse;

this.setState({ sortKey, isSortReverse });

}

Again, we pass the reverse prop to your Table component:

Advanced React Components 158

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading,

sortKey,

isSortReverse

} = this.state;

...

return (

<div className="page">

...

<Table

list={list}

sortKey={sortKey}

isSortReverse={isSortReverse}

onSort={this.onSort}

onDismiss={this.onDismiss}

/>

...

</div>

);

}

}

The Table has to have an arrow function block body to compute the data now:

Advanced React Components 159

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

...

</div>

{reverseSortedList.map(item =>

...

)}

</div>

);

}

Finally, we want to give the user visual feedback to distinguish which column is actively sorted. Each
Sort component has its specific sortKey already, which can be used to identify the activated sort.
We pass the sortKey from the internal component state as active sort key to your Sort component:

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

Advanced React Components 160

return(

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={onSort}

activeSortKey={sortKey}

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

onSort={onSort}

activeSortKey={sortKey}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={onSort}

activeSortKey={sortKey}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={onSort}

activeSortKey={sortKey}

>

Points

</Sort>

Archive

</div>

Advanced React Components 161

{reverseSortedList.map(item =>

...

)}

</div>

);

}

Now the user will know whether sort is active based on the sortKey and activeSortKey . Give your
Sort component an extra className attribute, in case it is sorted, to give visual feedback:

src/App.js

const Sort = ({

sortKey,

activeSortKey,

onSort,

children

}) => {

const sortClass = ['button-inline'];

if (sortKey === activeSortKey) {

sortClass.push('button-active');

}

return (

<Button

onClick={() => onSort(sortKey)}

className={sortClass.join(' ')}

>

{children}

</Button>

);

}

We can define sortClassmore efficiently using a library called classnames, which is installed using
npm:

Command Line

npm install classnames

After installation, we import it on top of the src/App.js file.

Advanced React Components 162

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import { sortBy } from 'lodash';

import classNames from 'classnames';

import './App.css';

Now we can define className with conditional classes:

src/App.js

const Sort = ({

sortKey,

activeSortKey,

onSort,

children

}) => {

const sortClass = classNames(

'button-inline',

{ 'button-active': sortKey === activeSortKey }

);

return (

<Button

onClick={() => onSort(sortKey)}

className={sortClass}

>

{children}

</Button>

);

}

There will be failing snapshot and unit tests for the Table component. Since we intentionally changed
again our component representations, we accept the snapshot tests, but we still need to fix the unit
test. In src/App.test.js , provide a sortKey and the isSortReverse boolean for the Table component.

Advanced React Components 163

src/App.test.js

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

sortKey: 'TITLE',

isSortReverse: false,

};

...

});

Wemay need to accept the failing snapshot tests again for the Table component, becausewe provided
extended props for it. The advanced sort interaction is finally complete.

Exercises:

• Use a library like Font Awesome¹⁴⁴ to indicate the (reverse) sort. It could be an arrow up or
arrow down icon next to each Sort header

• Read about the classnames library¹⁴⁵

¹⁴⁴https://fontawesome.com/
¹⁴⁵https://github.com/JedWatson/classnames

https://fontawesome.com/
https://github.com/JedWatson/classnames
https://fontawesome.com/
https://github.com/JedWatson/classnames

Advanced React Components 164

You have learned advanced component techniques in React! Let’s recap the chapter:

• React
– The ref attribute to reference DOM elements
– Higher-order components are a common way to build advanced components
– Implementation of advanced interactions in React
– Conditional classNames with a neat helper library

• ES6
– Rest destructuring to split up objects and arrays

You can always find the source code in the official repository¹⁴⁶.

¹⁴⁶https://github.com/the-road-to-learn-react/hackernews-client/tree/5.5

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.5
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.5

State Management in React
We have already covered the basics of state management in React in the previous chapters by using
React’s local state, so this chapter will dig a bit deeper. It will expand on the best practices, how to
apply them, and why you could consider using a third-party state management library.

State Management in React 166

Lifting State

Only the App component is a stateful ES6 component in your application. It handles a lot of
application state and logic in its class methods. Moreover, we pass a lot of properties to the Table
component, most of which are only used in there. It’s not important that the App component knows
about them, so the sort functionality could be moved into the Table component.

Moving substate from one component to another is known as lifting state. We want to move
state that isn’t used in the App component into the Table component, down from parent to child
component. To deal with state and class methods in the Table component, it has to become an ES6
class component. The refactoring from functional stateless component to ES6 class component is
straightforward.

Your Table component as a functional stateless component:

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

...

);

}

Your Table component as an ES6 class component:

State Management in React 167

src/App.js

class Table extends Component {

render() {

const {

list,

sortKey,

isSortReverse,

onSort,

onDismiss

} = this.props;

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return (

...

);

}

}

Since you want to deal with state and methods in your component, you have to add a constructor
and initial state.

src/App.js

class Table extends Component {

constructor(props) {

super(props);

this.state = {};

}

render() {

...

}

}

Now you can move state and class methods with the sort functionality from your App component
down to your Table component.

State Management in React 168

src/App.js

class Table extends Component {

constructor(props) {

super(props);

this.state = {

sortKey: 'NONE',

isSortReverse: false,

};

this.onSort = this.onSort.bind(this);

}

onSort(sortKey) {

const isSortReverse = this.state.sortKey === sortKey &&

!this.state.isSortReverse;

this.setState({ sortKey, isSortReverse });

}

render() {

...

}

}

Remember to remove the moved state and onSort() class method from your App component.

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

};

State Management in React 169

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onDismiss = this.onDismiss.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.needsToSearchTopStories = this.needsToSearchTopStories.bind(this);

}

...

}

You can also make the Table component more lightweight. To do this, we move props that are passed
to it from the App component, because they are handled internally in the Table component.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading

} = this.state;

...

return (

<div className="page">

...

{ error

? <div className="interactions">

<p>Something went wrong.</p>

</div>

: <Table

list={list}

onDismiss={this.onDismiss}

/>

}

State Management in React 170

...

</div>

);

}

}

In the Table component, use the internal onSort() method and the internal Table state:

src/App.js

class Table extends Component {

...

render() {

const {

list,

onDismiss

} = this.props;

const {

sortKey,

isSortReverse,

} = this.state;

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Title

</Sort>

<Sort

State Management in React 171

sortKey={'AUTHOR'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Points

</Sort>

Archive

</div>

{ reverseSortedList.map((item) =>

...

)}

</div>

);

}

}

Wemade a crucial refactoring bymoving functionality and state closer into another component, and
other components got more lightweight. Again, the component API of the Table got lighter because
it deals internally with the sort functionality.

Lifting state can go the other way as well: from child to parent component. It is called as lifting
state up. Imagine you were dealing with local state in a child component, and you want to fulfil a

State Management in React 172

requirement to show the state in your parent component as well. You would have to lift up the state
to your parent component. Moreover, imagine you want to show the state in a sibling component
of your child component. Again, you would lift the state up to your parent component. The parent
component deals with the local state, but exposes it to both child components.

Exercises:

• Read about lifting state in React¹⁴⁷
• Read about lifting state in learn React before using Redux¹⁴⁸

¹⁴⁷https://reactjs.org/docs/lifting-state-up.html
¹⁴⁸https://www.robinwieruch.de/learn-react-before-using-redux/

https://reactjs.org/docs/lifting-state-up.html
https://www.robinwieruch.de/learn-react-before-using-redux/
https://reactjs.org/docs/lifting-state-up.html
https://www.robinwieruch.de/learn-react-before-using-redux/

State Management in React 173

Revisited: setState()

So far, we have used React setState() to manage your internal component state. We can pass an
object to the function where it updates partially the local state.

Code Playground

this.setState({ value: 'hello'});

But setState() doesn’t take only an object. In its second version, you can pass a function to update
the state.

Code Playground

this.setState((prevState, props) => {

...

});

There is one crucial case where it makes sense to use a function over an object: when you
update the state depending on the previous state or props. If you don’t use a function, the local
state management can cause bugs. The React setState() method is asynchronous. React batches
setState() calls and executes them eventually. Sometimes, the previous state or props changes
between before we can rely on it in our setState() call.

Code Playground

const { oneCount } = this.state;

const { anotherCount } = this.props;

this.setState({ count: oneCount + anotherCount });

Imagine that oneCount and anotherCount, thus the state or the props, change somewhere else
asynchronously when you call setState(). In a growing application, you have more than one
setState() call across your application. Since setState() executes asynchronously, you could rely
in the example on stale values.

With the function approach, the function in setState() is a callback that operates on the state and
props at the time of executing the callback function. Even though setState() is asynchronous, with
a function it takes the state and props at the time when it is executed.

State Management in React 174

Code Playground

this.setState((prevState, props) => {

const { oneCount } = prevState;

const { anotherCount } = props;

return { count: oneCount + anotherCount };

});

In our code, the setSearchTopStories() method relies on the previous state, and this is a good
example to use a function over an object in setState(). Right now, it looks like the following code:

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

});

}

Here, we extracted values from the state, but updated the state depending on the previous state
asynchronously. Now we’ll use the functional approach to prevent bugs from a stale state:

State Management in React 175

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

this.setState(prevState => {

...

});

}

We can move the whole block we implemented into the function by directing it to operate on the
prevState instead of the this.state.

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

this.setState(prevState => {

const { searchKey, results } = prevState;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

return {

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

};

});

}

That will fix the issue with a stale state, but there is still onemore improvement. Since it is a function,
you can extract the function for improved readability. One more advantage to use a function over
an object is that function can live outside of the component. We still have to use a higher-order
function to pass the result to it since we want to update the state based on the fetched result from
the API.

State Management in React 176

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

this.setState(updateSearchTopStoriesState(hits, page));

}

The updateSearchTopStoriesState() function has to return a function. It is a higher-order function
that can be defined outside the App component. Note how the function signature changes slightly
now.

src/App.js

const updateSearchTopStoriesState = (hits, page) => (prevState) => {

const { searchKey, results } = prevState;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

return {

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

};

};

class App extends Component {

...

}

The function instead of object approach in setState() fixes potential bugs, while increasing the
readability and maintainability of your code. Further, it becomes testable outside of the App
component. I advise exporting and testing it as practice.

State Management in React 177

Exercise:

• Read about React using state correctly¹⁴⁹
• Export updateSearchTopStoriesState from the file

– Write a test for it which passes the a payload (hits, page) and a made up previous state
and finally expect a new state

• Refactor your setState()methods to use a function, but only when it makes sense, because it
relies on props or state

• Run your tests again and verify that everything is up to date

¹⁴⁹https://reactjs.org/docs/state-and-lifecycle.html#using-state-correctly

https://reactjs.org/docs/state-and-lifecycle.html#using-state-correctly
https://reactjs.org/docs/state-and-lifecycle.html#using-state-correctly

State Management in React 178

Taming the State

Previous chapters have shown you that state management can be a crucial topic in larger applica-
tions, as React and a lot of other SPA frameworks struggle with it. As applications get more complex,
the big challenge in web applications is to tame and control the state.

Compared to other solutions, React has already taken a big step forward. A unidirectional data flow
and a simple API to manage state in components is indispensable. These concepts make it easier
to reason about your state and your state changes. It also makes it easier to reason about it on a
component level and on an application level to a certain degree.

It is possible to introduce bugs by operating on stale state when using an object over a function in
setState(). We lift state around to share or hide necessary state across components. Sometimes
a component needs to lift up state, because its sibling component depends on it. Perhaps the
component is far away in the component tree, so the stated needs to be shared across the whole
component tree. Components are more involved in state management, as the main responsibility of
components is representing the UI.

Because of this, there are standalone solutions to take care of state management. Libraries like
Redux¹⁵⁰ or MobX¹⁵¹ are both feasible solutions in a React application. They come with extensions,
react-redux¹⁵² and mobx-react¹⁵³, to integrate them into the React view layer. Redux and MobX are
outside of the scope of this book, but I encourage you to study the different ways to handle scaling
state management as your React applications become more complex.

Exercises:

• Read about external state management and how to learn it¹⁵⁴
• Check out my second book about state management in React called Taming the State in React¹⁵⁵

¹⁵⁰https://redux.js.org/introduction
¹⁵¹https://mobx.js.org/
¹⁵²https://github.com/reactjs/react-redux
¹⁵³https://github.com/mobxjs/mobx-react
¹⁵⁴https://www.robinwieruch.de/redux-mobx-confusion/
¹⁵⁵https://roadtoreact.com/

https://redux.js.org/introduction
https://mobx.js.org/
https://github.com/reactjs/react-redux
https://github.com/mobxjs/mobx-react
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/
https://redux.js.org/introduction
https://mobx.js.org/
https://github.com/reactjs/react-redux
https://github.com/mobxjs/mobx-react
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/

State Management in React 179

You have learned advanced state management in React! Let’s recap the last chapter:

• React
– Lift state management up and down to suitable components
– setState() can use a function to prevent stale state bugs
– Existing external solutions that help you to tame the state

You can find the source code in the official repository¹⁵⁶.

¹⁵⁶https://github.com/the-road-to-learn-react/hackernews-client/tree/5.6

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.6
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.6

Final Steps to Production
The last chapters will show you how to deploy your application to production. For this, we use the
free hosting service Heroku. On the way to deploying the application, we will uncover more about
create-react-app.

Final Steps to Production 181

Eject

The following knowledge is not necessary to deploy your application to production, but it still bears
mentioning. create-react-app comes with one feature to keep it extendable, but also to prevent a
vendor lock-in. A vendor lock-in usually happens when you buy into a technology but there is no
escape hatch from using it in the future. Fortunately, in create-react-app you have such an escape
hatch with “eject”.

In your package.json you will find the scripts to start, test, and build your application. The last script
is eject. However, it is important you know that it is a one-way operation. That means once you
eject, you can’t go back! It is advisable to stay in the safe environment of create-react-app if you
have just started creating applications in React.

If you feel comfortable enough to run npm run eject, the command copies all the configuration
and dependencies to your package.json and a new config/ folder. It converts the whole project into
a custom setup with tooling that includes Babel and Webpack, and grants full control over all these
tools.

Its official documentation says create-react-app is suitable for small to mid size projects, so you
shouldn’t feel obligated to use the “eject” command until you’re ready.

Exercises:

• Read about eject¹⁵⁷

¹⁵⁷https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject

https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject

Final Steps to Production 182

Deploy your App

No application should stay on localhost; eventually, it has to go live to see how it will perform in real-
life scenarios. Heroku is a platform as a service where you can host your application, and it offers
seamless integration with React. Specifically, it’s possible to deploy a create-react-app in minutes,
with a a zero-configuration deployment which follows the philosophy of create-react-app.

There are two requirements before an application can be deployed to Heroku:

• Install the Heroku CLI¹⁵⁸
• Create a free Heroku account¹⁵⁹

If you have installed Homebrew, you can install the Heroku CLI from command line:

Command Line

brew update

brew install heroku-toolbelt

Now you can use git and Heroku CLI to deploy your application:

Command Line

git init

heroku create -b https://github.com/mars/create-react-app-buildpack.git

git add .

git commit -m "react-create-app on Heroku"

git push heroku master

heroku open

That’s all there is to it. If you run into problems, check these resources for troubleshooting options:

• Git and GitHub Essentials¹⁶⁰
• Deploying React with Zero Configuration¹⁶¹
• Heroku Buildpack for create-react-app¹⁶²

¹⁵⁸https://devcenter.heroku.com/articles/heroku-cli
¹⁵⁹https://www.heroku.com/
¹⁶⁰https://www.robinwieruch.de/git-essential-commands/
¹⁶¹https://blog.heroku.com/deploying-react-with-zero-configuration
¹⁶²https://github.com/mars/create-react-app-buildpack

https://devcenter.heroku.com/articles/heroku-cli
https://www.heroku.com/
https://www.robinwieruch.de/git-essential-commands/
https://blog.heroku.com/deploying-react-with-zero-configuration
https://github.com/mars/create-react-app-buildpack
https://devcenter.heroku.com/articles/heroku-cli
https://www.heroku.com/
https://www.robinwieruch.de/git-essential-commands/
https://blog.heroku.com/deploying-react-with-zero-configuration
https://github.com/mars/create-react-app-buildpack

Outline
So now we’ve reached the end of The Road to Learn React. I hope you enjoyed reading it, and I hope
it helped you to gain some traction in React. If you liked the book, share it as a way to learn React
with your friends. It should be used as giveaway. Also, a review on Amazon¹⁶³ or Goodreads¹⁶⁴ can
really help improve future projects.

So, where can you go from here? I recommend you extend the application on your own, so
eventually you can start creating your very own React projects. Consider doing this before you
dive into another book, course or tutorial. Do it for one week, take it to production by deploying
it, and reach out to me me¹⁶⁵ or others to showcase it. I am always interested in seeing what my
readers built and helping them along.

If you are looking for more extensions for your application, I recommend several learning paths
after you’ve mastered the basics:

• Connecting to a Database and/or Authentication: In a growing React application, you may
want to persist data eventually. The data should be stored in a database so it can survive after
a browser session, and so it can be shared across different users using your application. The
simplest way to introduce a database is Firebase. In this tutorial¹⁶⁶, you will find a step-by-
step guide on how to use Firebase authentication in React. Beyond that, you can use Firebase’s
realtime database to store user entities.

• State Management: You have used React this.setState() and this.state to manage and
access local component state. That’s a good start. In a larger application, however, you will
experience the limits of React’s local component state¹⁶⁷. It is imperative you learn to use third-
party state management libraries like Redux or MobX¹⁶⁸. On the Road to React¹⁶⁹ platform,
you will find the course “Taming the State in React” that teaches about advanced local
state management using Redux and MobX. The course comes with an ebook as well, but I
recommend you dive into the source code and screencasts too.

• Tooling with Webpack and Babel: We used create-react-app to set up the application we
created for this book. At some point youmaywant to learn the tooling around it, which enables
you to setup your own project without create-react-app. I recommend a minimal setup with
Webpack and Babel¹⁷⁰, after which you can apply additional tooling on your own. For instance,
you could use ESLint¹⁷¹ to follow a unified code style.

¹⁶³https://www.amazon.com/dp/B077HJFCQX
¹⁶⁴https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
¹⁶⁵https://twitter.com/rwieruch
¹⁶⁶https://www.robinwieruch.de/complete-firebase-authentication-react-tutorial/
¹⁶⁷https://www.robinwieruch.de/learn-react-before-using-redux/
¹⁶⁸https://www.robinwieruch.de/redux-mobx-confusion/
¹⁶⁹https://roadtoreact.com/
¹⁷⁰https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
¹⁷¹https://www.robinwieruch.de/react-eslint-webpack-babel/

https://www.amazon.com/dp/B077HJFCQX
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://twitter.com/rwieruch
https://www.robinwieruch.de/complete-firebase-authentication-react-tutorial/
https://www.robinwieruch.de/learn-react-before-using-redux/
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.robinwieruch.de/react-eslint-webpack-babel/
https://www.amazon.com/dp/B077HJFCQX
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://twitter.com/rwieruch
https://www.robinwieruch.de/complete-firebase-authentication-react-tutorial/
https://www.robinwieruch.de/learn-react-before-using-redux/
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.robinwieruch.de/react-eslint-webpack-babel/

Outline 184

• Code Organization: Recall if you will the chapter about code organization. You can apply
these changes now, if you haven’t already. It will help organize your components in structured
files and folders (modules), and it will help you understand the principles of code splitting,
reusability, maintainability, and module API design. Your applications will eventually grow
and need to be structured into modules, so it’s better to start now.

• Testing: The book only scratched the surface of testing. If you are not familiar with the
topic, you should dive deeper into unit testing and integration testing, especially with React
applications. I would recommend to stick to Enzyme and Jest for implementations, to refine
your approaches with unit and snapshot tests.

• React Component Syntax: The best practices for implementing React components evolve
over time. You will find many ways to write your React components, especially React class
components, in other learning resources. A GitHub repository called react-alternative-class-
component-syntax¹⁷² is a great way to learn alternative ways to write React class components.
By using class field declarations, you can write them even more concisely in the future.

• UI Components:Many beginners make the mistake of introducing UI component libraries too
early in their projects. It is more practical to learn how to implement and use a dropdown,
checkbox, or dialog in React with standard HTML elements. Most of these components will
manage their own local state. A checkbox has to know whether it is checked or unchecked,
so you should implement them as controlled components. After we covered the foundational
implementations, introducing a UI component library with checkboxes and dialogs as React
components should be easier.

• Routing: You can implement routing for your application with react-router¹⁷³. So far, there is
only one page in your application. React Router helps manage multiple pages across multiple
URLs. When you introduce routing to your application, you don’t make any requests to your
web server to request the next page. The router will do everything for you on the client-side.
So get your hands dirty and introduce routing in your application.

• Type Checking: Earlier, we used React PropTypes to define component interfaces. It is a good
practice to prevent bugs, but the PropTypes are only checked on runtime. You can go further
by introducing static type checking at compile time. TypeScript¹⁷⁴ and Flow¹⁷⁵ are popular type
systems for React.

• React Native: React Native¹⁷⁶ brings your application to mobile devices, such as iOS and
Android applications. Once you’ve mastered React, the learning curve for React Native
shouldn’t be that steep, as they share the same principles. The only difference with mobile
are the layout components.

• Other Projects: There are plenty of tutorials out there that use only React to build exciting
applications, which provide good practice to apply what you’ve learned in this book before
you move on to intermediate projects. Here are a few of my own:
– A paginated and infinite scrolling list¹⁷⁷

¹⁷²https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
¹⁷³https://github.com/ReactTraining/react-router
¹⁷⁴https://www.typescriptlang.org/
¹⁷⁵https://flowtype.org/
¹⁷⁶https://facebook.github.io/react-native/
¹⁷⁷https://www.robinwieruch.de/react-paginated-list/

https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://github.com/ReactTraining/react-router
https://www.typescriptlang.org/
https://flowtype.org/
https://facebook.github.io/react-native/
https://www.robinwieruch.de/react-paginated-list/
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://github.com/ReactTraining/react-router
https://www.typescriptlang.org/
https://flowtype.org/
https://facebook.github.io/react-native/
https://www.robinwieruch.de/react-paginated-list/

Outline 185

– Showcasing tweets on a Twitter wall¹⁷⁸
– Connecting your React application to Stripe for charging money¹⁷⁹.

I invite you to visit my website¹⁸⁰ to find more interesting topics about web development and
software engineering. You can also subscribe tomyNewsletter¹⁸¹ to get updates about articles, books,
and courses. Furthermore, the Road to React¹⁸² course platform offers more advanced lessons about
the React ecosystem.

Finally, I hope to find more Patrons¹⁸³ who are willing to support my content, as there are many
students who cannot afford to pay for educational content. That’s why I put lots of my content out
there for free. Supporting me on Patreon allows to educate others for free.

Once again, if you liked the book, I ask that you take a moment to think about a person who would
like to learn React and share it with them. The book is intended to be given to others, and it will
improve over time if more people read it and share feedback.

Thank you for reading the Road to learn React.

Regards,

Robin Wieruch

¹⁷⁸https:/www.robinwieruch.de/react-svg-patterns/
¹⁷⁹https://www.robinwieruch.de/react-express-stripe-payment/
¹⁸⁰https://www.robinwieruch.de
¹⁸¹https://www.getrevue.co/profile/rwieruch
¹⁸²https://roadtoreact.com
¹⁸³https://www.patreon.com/rwieruch

https:/www.robinwieruch.de/react-svg-patterns/
https://www.robinwieruch.de/react-express-stripe-payment/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://roadtoreact.com/
https://www.patreon.com/rwieruch
https:/www.robinwieruch.de/react-svg-patterns/
https://www.robinwieruch.de/react-express-stripe-payment/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://roadtoreact.com/
https://www.patreon.com/rwieruch

	Table of Contents
	Foreword
	About the Author
	Testimonials
	Education for Children
	FAQ
	Change Log
	Challenge
	Introduction to React
	Hi, my name is React.
	Requirements
	Installation
	Zero-Configuration Setup
	Introduction to JSX
	ES6 const and let
	ReactDOM
	Hot Module Replacement
	Complex JavaScript in JSX
	ES6 Arrow Functions
	ES6 Classes

	Basics in React
	Local Component State
	ES6 Object Initializer
	Unidirectional Data Flow
	Bindings
	Event Handler
	Interactions with Forms and Events
	ES6 Destructuring
	Controlled Components
	Split Up Components
	Composable Components
	Reusable Components
	Component Declarations
	Styling Components

	Getting Real with APIs
	Lifecycle Methods
	Fetching Data
	ES6 Spread Operators
	Conditional Rendering
	Client- or Server-side Search
	Paginated Fetch
	Client Cache
	Error Handling
	Axios instead of Fetch

	Code Organization and Testing
	ES6 Modules: Import and Export
	Code Organization with ES6 Modules
	Snapshot Tests with Jest
	Unit Tests with Enzyme
	Component Interface with PropTypes
	Debugging with React Developer Tools

	Advanced React Components
	Ref a DOM Element
	Loading …
	Higher-Order Components
	Advanced Sorting

	State Management in React
	Lifting State
	Revisited: setState()
	Taming the State

	Final Steps to Production
	Eject
	Deploy your App

	Outline

