

Taming the State in React
Your journey to master Redux and MobX

Robin Wieruch

This book is for sale at http://leanpub.com/taming-the-state-in-react

This version was published on 2017-10-19

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 Robin Wieruch

http://leanpub.com/taming-the-state-in-react
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Robin Wieruch by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Taming the State in React by @rwieruch #ReactJs
https://roadtoreact.com/course-details?courseId=TAMING_THE_STATE

The suggested hashtag for this book is #ReactJs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#ReactJs

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Taming%20the%20State%20in%20React%20by%20@rwieruch%20%23ReactJs%20https://roadtoreact.com/course-details?courseId=TAMING_THE_STATE
https://twitter.com/intent/tweet?text=I%20just%20bought%20Taming%20the%20State%20in%20React%20by%20@rwieruch%20%23ReactJs%20https://roadtoreact.com/course-details?courseId=TAMING_THE_STATE
https://twitter.com/search?q=%23ReactJs
https://twitter.com/search?q=%23ReactJs

Contents

Introduction . i
About the Author . iii
Requirements . iv

React . iv
Editor and Terminal . iv
Node and NPM . v

FAQ . vi
How to read the Book . viii

Local State Management . 1
Definitions . 2

Pure Functions . 2
Immutability . 2
State . 2

Local State in React . 5
Stateful and Stateless Components . 7
Props vs. State . 10
Form State . 11
Controlled Components . 13
Unidirectional Data Flow . 14

Scaling Local State in React . 17
Lifting State . 17
Functional State . 26
Higher Order Components . 29
The Provider Pattern . 33

Persistence in State . 39
Local Storage . 40
Caching in State . 41

Transition to Sophisticated State . 43
The Controversies of Local State Management . 43
The Flaw of Local State Management . 44

Redux . 45

CONTENTS

Basics in Redux . 47
Action(s) . 47
Reducer(s) . 48
Store . 52
Hands On: Redux Standalone . 53

Advanced Actions . 56
Minimum Action Payload . 56
Action Type . 57
Action Creator . 58
Optional Payload . 59
Payload Structure . 60
Hands On: Redux Standalone with advanced Actions 61

Advanced Reducers . 65
Initial State . 65
Nested Data Structures . 66
Combined Reducer . 67
Clarification for Initial State . 70
Nested Reducers . 71
Hands On: Redux Standalone with advanced Reducers 72

Redux in React . 75
Connecting the State . 76

Hands On: Bootstrap React App with Redux . 76
Hands On: Naive Todo with React and Redux . 81

Connecting the State, but Sophisticated . 85
Hands On: Sophisticated Todo with React and Redux 86
Hands On: Connecting State Everywhere . 88

Redux State Structure and Retrieval . 90
Middleware in Redux . 91
Immutable State . 93
Normalized State . 95
Selectors . 101

Plain Selectors . 101
Denormalize State in Selectors . 102
Reselect . 106

Hands On: Todo with Advanced Redux . 107
Hands On: Todo but more Features . 114

Asynchronous Redux . 119
Redux Thunk . 122

Hands On: Todo with Notifications . 124
Asynchronous Actions Alternatives . 130

CONTENTS

Redux Saga . 130
Hands On: Todo with Redux Saga . 131

Redux Patterns, Techniques and Best Practices . 134
Using JavaScript ES6 . 135
Naming Conventions . 137
The Relationship between Actions and Reducers . 139
Folder Organization . 142

Technical Folder Organization . 142
Feature Folder Organization . 143
Ducks . 145

Testing . 147
Error Handling . 151

(React in) Redux FAQ . 154
Redux vs. Local State . 155
View vs. Entity State . 156
Accidental vs. Planned State . 157

Redux State as Architecture . 158
Hands On: Hacker News with Redux . 160

Part 1: Project Organization . 160
Part 2: Plain React Components . 162
Part 3: Apply Styling . 165
Part 4: Archive a Story . 171
Part 5: Introduce Redux: Store + First Reducer . 175
Part 6: Two Reducers . 177
Part 7: First Action . 179
Part 8: First Selector . 180
Part 9: Re-render View . 182
Part 10: First Middleware . 183
Part 11: First Action Creator . 184
Part 12: Connect React with Redux . 185
Part 13: Lift Connection . 187
Part 14: Interacting with an API . 189
Part 15: Separation of API . 196
Part 16: Error Handling . 197
Part 17: Testing . 201
Final Words . 204

Redux Ecosystem Outline . 206
Redux DevTools . 207
Connect Revisited . 208

CONTENTS

Concise Actions and Reducers . 209
React Redux Libraries . 212
Routing with Redux . 213
Typed Redux . 214
Server-side Redux . 216

MobX . 217
Introduction . 218

Observable State . 219
Autorun . 219
Actions . 220
Computed Values . 223

MobX in React . 224
Local State . 227
Scaling Reactions . 230
Inject Stores . 233
Advanced MobX . 236

Other Reactions . 236
Be Opinionated . 238

Alternative to Redux? . 240

Last but not Least . 241
Further Learning Paths . 242
Never stop Learning . 244
Acknowledgements . 246
Thank You . 248
Copyright . 249

Introduction
State management in applications has become a popular topic in the recent years. Single page
applications (SPAs) - that are only delivered once from a web server yet stay interactive - have to
establish state management in the frontend. They have to keep the state consistent without making
any more requests to the backend. They have to give the user an effortless and pleasant experience
when using the application. It already starts when opening a popup in your application. Someone
has to be aware of this state. But who manages this state?

jQuery was a popular library before the first SPA solutions, such as Angular, Ember, and Backbone
appeared. State management itself wasn’t a huge problem in jQuery in the beginning, because the
library was most often only used for selective DOM manipulations. You could add animations to
your HTML, add or remove DOM nodes or change the style of your HTML programatically.

Eventually, the jQuery code, and in general the portion of JavaScript code compared to HTML and
CSS grew, and people wrote more sophisticated frontend applications. Most of the time, it ended up
in a mess of jQuery code where not only state management was a problem, but also general best
practices like clean code were missing. There was no solution for the general architecture of these
kind of frontend applications and people struggled to keep it maintainable in larger applications.

After a while, single page application (SPA) solutions like Angular, Ember and Backbone emerged
to give these unstructured frontend applications a proper framework around them. The greater part
of the SPAs build up on the model-view-controller (MVC) pattern to architect the application. These
frameworks contain everything you would need, from a view layer for displaying HTML in the
browser to a model layer for interacting with your backend, to build your sophisticated application.
The term SPA was coined, because these applications are only served once from the backend, as a
single page, but then operate only in the frontend. They are blobs of HTML with JavaScript which
contain everything the applications needs to work on the client-side. When navigating to a different
page under a different URL, there is no reloading required. They only interact with the backend
to pull or push new data from or to it. Thus, the only thing that changes is the state inside the
application. But who manages this state?

Even though these solutions established best practices, patterns and architectures for the first
generation of SPAs, state management became a recurring issue. When interacting with the backend
to retrieve new data, it was unclear how to manage the data in a predictable way. When triggering
view related elements, such as modals or popups, in the frontend, often there wasn’t established best
practice to manage these states. Every framework tried to apply their own solution for it. Eventually,
people came up with their own best practices and libraries, but it never became a predictable and
consistent experience to manage state with clear constraints.

There was one major flaw with these SPA solutions that led to this problem in the first place: As
frameworks, they tried to solve too many issues at once. They wouldn’t have the chance to solve all

Introduction ii

issues in the first generation of their existence in the world of SPAs. Eventually, they solved these
issues in a future iteration when other SPA solutions appeared at the scene.

The second generation of SPA solutions, among them libraries like React and Vue, focused only on
smaller parts of the application. They focused on the view layer. It was up to the engineer to decide on
further libraries as solutions for specific problems. That’s what made React such a powerful library
in the first place1, because everyone could decide to extend the application with libraries that solve
specific yet small problems.

Nowadays, a ton of articles and libraries try to solve the issue of state management. It is difficult to
find a consistent source of truth to learn state management in modern applications. Even though,
solutions like React have their own state management implementation for local state in components,
there are more external solutions coming as libraries such as Redux and MobX that establish
sophisticated state management.

Still, it lacks one guide to navigate through all these different solutions to make the differences and
benefits clear. Quite often, the guides miss the point of teaching the problem first. In addition, instead
of showing the minimal approach, they try to fix the problem of state management by using over-
engineered approaches. But it can be so much simpler. It only needs one resource to guide through
state management in modern applications in a consistent and constructive way. That’s the mission
of this book.

If you want to learn something, you have to do it step by step. Trying to solve each atomic problem
after the next one. Don’t apply everything at once. Understand the problem and solve it. That’s my
attempt with this book: It doesn’t only teach Redux in React, but state management in modern
applications. It goes beyond the documentation of state management libraries, but applies the
learnings in real world applications in the book.

These are the heroes of the book: Local State (in React), Redux and MobX. It wouldn’t have been
possible to write the book without the innovators behind these solutions: Dan Abramov2, Andrew
Clark3 and Michel Weststrate4. I guess, I can thank them in the name of the community for their
efforts to make state management in modern applications a consistent and enjoyable experience.

1https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
2https://twitter.com/dan_abramov
3https://twitter.com/acdlite
4https://twitter.com/mweststrate

https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://twitter.com/dan_abramov
https://twitter.com/acdlite
https://twitter.com/acdlite
https://twitter.com/mweststrate
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://twitter.com/dan_abramov
https://twitter.com/acdlite
https://twitter.com/mweststrate

Introduction iii

About the Author

Robin Wieruch is a german software and web engineer who is dedicated to learn and teach
programming in JavaScript. After graduating from university with a masters degree in computer
science, he hasn’t stopped learning every day on his own. His experiences from the startup world,
where he used JavaScript excessively during his professional time and spare time, gave him the
opportunity to teach others about these topics.

For a few years, Robin worked closely with a great team of engineers at a company called Small
Improvements5 on a large scale application. The company builds a SaaS product enabling customers
to create a feedback culture at their company. Under the hood, the application worked with
JavaScript in the frontend and Java in the backend. In the frontend, the first iteration was written in
Java with theWicket Framework and jQuery. When the first generation of SPAs became popular, the
company migrated to Angular 1.x for the frontend application. After using Angular for more than 2
years, it became clear that Angular wasn’t the best solution to work with state intense applications
back in the days. That’s why the company made the final jump to React and Redux that has enabled
it to operate on a large scale successfully.

During his time in the company, Robin regularly wrote articles about web development on his
personal website. He noticed that people would give him great feedback on his articles that allowed
him to improve his writing and teaching style. Article after article, Robin grew in his ability to teach
others. Whereas the first article was packed with too much stuff that could be quite overwhelming
for students, the articles improved over time by focussing and teaching only one subject.

Nowadays, Robin is self-employed to teach others. He finds it a fulfilling activity to see students
thrive by giving them clear objectives and a short feedback loop. That’s one thing you would learn
at a feedback company, wouldn’t you? But without coding himself he wouldn’t be able to teach
things. That’s why he invests his remaining time in programming. You can find more information
about Robin and ways to support him in his doings on his website6.

5https://www.small-improvements.com/
6https://www.robinwieruch.de/about/

https://www.small-improvements.com/
https://www.small-improvements.com/
https://www.robinwieruch.de/about/
https://www.small-improvements.com/
https://www.robinwieruch.de/about/

Introduction iv

Requirements

What are the requirements to read the book? First of all, you should be familiar with the basics of
web development. You should know how to use HTML, CSS and JavaScript. Perhaps it makes sense
to know the term API7 too, because you will use APIs in the book. In addition, I encourage you to
join the official Slack Group8 for the book to get help or to help others.

React

The book uses React as library to teach modern state management. It is a perfect choice for
demonstrating and learning state management in modern applications. Because React is only a view
layer, it is up to you to decide how to deal with the state in your application. The state management
layer is exchangeable.

After all, it’s not necessary to be a React developer in order to learn about state management in
modern applications. If you are developing with another SPA framework, such as Angular, or view
layer library, such as Vue, all these things about state management taught in this book can still
be applied in your applications. The state management solutions are agnostic to frameworks and
libraries.

Still, since the book uses React for the sake of teaching state management in a proper context, if
you are not familiar with React or need to have a refresher on the topic, I encourage you to read
the precedent book: The Road to learn React9. It is open source and should enable everyone to learn
React. However, you can decide to pay something to support the project.

Even though the book is open source, people with lacking education have no access to open source in
the first place. They have to be educated in the English language to be enabled to access it. The Road
to learn React attempts to support education in the developing world10 on an occasionally basis, but
it is a tough undertaking since the book itself is pay what you want.

In addition, the Road to learn React teaches you to make the transition from JavaScript ES5 to
JavaScript ES6. After having read the Road to learn React, you should possess all the knowledge to
read this book. It builds up on the React book perfectly.

Editor and Terminal

What about the development environment? You will need a running editor or IDE and terminal
(command line tool). You can follow my setup guide11. It is adjusted for Mac users, but you can

7https://www.robinwieruch.de/what-is-an-api-javascript/
8https://slack-the-road-to-learn-react.wieruch.com/
9https://www.robinwieruch.de/the-road-to-learn-react/
10https://www.robinwieruch.de/giving-back-by-learning-react/
11https://www.robinwieruch.de/developer-setup/

https://www.robinwieruch.de/what-is-an-api-javascript/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/what-is-an-api-javascript/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/developer-setup/

Introduction v

substitute most of the tools for other operating system. There is a ton of articles out there that will
show you how to setup a web development environment in a more elaborated way for your OS.

Optionally, you can use git and GitHub on your own, while conducting the exercises in the book, to
keep your projects and the progress in repositories on GitHub. There exists a little guide12 on how
to use these tools. But once again, it is not mandatory for the book and can be overwhelming when
learning everything from scratch. So you can skip it if you are a newcomer in web development to
focus on the essential parts taught in this book.

Node and NPM

Last but not least, you will need an installation of node and npm13. Both are used to manage libraries
you will need along the way. In this book, you will install external node packages via npm (node
package manager). These node packages can be libraries or whole frameworks.

You can verify your versions of node and npm on the command line. If you don’t get any output in
the terminal, you need to install node and npm first. These are only my versions during the time
writing this book:

Command Line

node --version

*v8.2.1

npm --version

*v5.3.0

If you read the Road to learn React, you should be familiar with the setup already. The book gives
you a short introduction into the npm ecosystem on the command line, too. So if you are not familiar
with this, once again you can pick up the open source book.

12https://www.robinwieruch.de/git-essential-commands/
13https://nodejs.org/en/

https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/

Introduction vi

FAQ

How to get updates? I have two channels where I share updates about my content. Either you can
subscribe to updates by email14 or follow me on Twitter15. Regardless of the channel, my objective
is to only share qualitative content. You will never receive any spam. Once you get the update that
the book has changed, you can download the new version of it.

How to get access to the source code projects and screencasts series? If you have bought one
of the extended packages that give you access to the source code projects and screencast series, you
should find these on your course dashboard16. If you have bought the course somewhere else than
on the official Road to React17 course platform, you need to create an account on this platform, go
to the Admin page and reach out to me with one of the email templates. Afterward I can enroll you
to the course. If you haven’t bought one of the extended packages, you can reach out any time to
upgrade your content to access the source code projects and screencast series.

Why is the book not for free? I often share content for free (blog18, ebook19). I believe information
should be free and everyone should be able to learn from it. However, at some point I think people are
able to be professionals in these areas and can afford to pay for the more advanced content. Whereas
learning React is an entry point to a whole ecosystem and to first professional opportunities, Redux
and MobX are advanced solutions that are used in larger applications most often in companies. At
this point, it makes sense to pay for educating to keep up with the industry standards.

What should I do when I cannot afford to pay for the book? If you cannot afford the book but
want to learn about the topic, you can reach out to me. It could be that you are still a student or that
the book would be too expensive in your country. In addition, I want to support any cause to improve
the diversity in our culture of developers. If you belong to a minority or are in an organization that
supports diversity, please reach out to me.

How to support the project? If you believe in the content that I create, you can support me20.
Furthermore, I would be grateful if you spread the word about this book after you read it and enjoyed
reading it.

Is there a money back guarantee? Yes, there is 100% money back if you don’t think it’s a good fit.
Please reach out to me to get a refund.

Can I help to improve the content? Yes, I would love to hear your feedback. You can simply open
an issue on GitHub21. These can be improvements technical wise yet also about the written word. I
am no native speaker. In the next iteration of the book, if the book generates income, I will hand it
over to a proofreader and editor for improvements.

14https://www.getrevue.co/profile/rwieruch
15https://twitter.com/rwieruch
16https://roadtoreact.com/my-courses
17https://roadtoreact.com/
18https://www.robinwieruch.de/
19https://www.robinwieruch.de/the-road-to-learn-react/
20https://www.robinwieruch.de/about/
21https://github.com/rwieruch/taming-the-state-issue-tracker

https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://roadtoreact.com/my-courses
https://roadtoreact.com/
https://www.robinwieruch.de/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/about/
https://github.com/rwieruch/taming-the-state-issue-tracker
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://roadtoreact.com/my-courses
https://roadtoreact.com/
https://www.robinwieruch.de/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/about/
https://github.com/rwieruch/taming-the-state-issue-tracker

Introduction vii

How can I get help while reading the book? The book has a Slack Group22for people who are
reading the book. You can join the channel to get help or to help others. After all, helping others can
internalize your learnings, too. If there is no one out to help you, you can always reach out to me.

Why does it use React to teach about state?Nowadays, state management is often used in modern
applications. These applications are built with solutions like React, Angular and Vue. In order to
teach about state management, it makes sense to apply it in a real world context such as React. I
picked React, because it has only a slim API and a good learning curve. It is only the view layer with
local state management. You can learn about it in one of my other books: the Road to learn React23.
However, you don’t necessarily need to apply your learnings about state management in React. You
can apply these learnings in your Angular, Vue or React Native application, too.

What is the ratio between learning Redux and MobX? Even though MobX becomes more of a
popular alternative to Redux, the book teaches you more about Redux than MobX. However, in the
future I want to extend the content and depending on the popularities adjust the chapters.

What’s your motivation behind the book? I want to teach about this topic in a consistent way.
You often find material online that doesn’t receive any updates or only teaches a small part of a
topic. When you learn something new, people struggle to find consistent and up-to-date resources
to learn from. I want to give you this consistent and up-to-date learning experience. In addition, I
hope I can support minorities with my projects by giving them the content for free or by having
other impacts24. In addition, in the recent time, I found myself fulfilled when teaching others about
programming. It’s a meaningful activity for me that I prefer over any other 9 to 5 job at any company.
That’s why I hope to pursue this path in the future.

22https://slack-the-road-to-learn-react.wieruch.com/
23https://www.robinwieruch.de/the-road-to-learn-react/
24https://www.robinwieruch.de/giving-back-by-learning-react/

https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/giving-back-by-learning-react/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/giving-back-by-learning-react/

Introduction viii

How to read the Book

On thing is certain, no one learned programming by just reading a book. Programming is about
hands on experiences. It is about conquering challenges to grow in the long term. So no one learned
a programming paradigm, such as functional programming, in the short term. No one learned a
concept, such as state management, on a weekend. No one learned yet another library, such as React
and Redux, over one night. You will learn things only by deliberately practicing them.

In the book, I want to give you these hands on experiences and challenges to grow. The challenges
are meant to create a flow experience, a scenario where the challenge meets your skills and tools
at hand. Otherwise, you would feel either overwhelmed or bored. If the book accomplishes to keep
this balance of challenging you and respecting your level of skill, you might experience a state of
flow25. Personally I found this insight astonishing when I read about it, so I hope that I can induce
it in this book. It would be the perfect outcome.

The book follows the central theme of state management in modern applications. It starts with local
state management in a view library (React), points out the problems of it in scaling applications and
will lead over to sophisticated state management solutions such as Redux and MobX. While you
read the book, you will find code playgrounds that illustrate problems and solutions. I encourage
you to play around with these code playgrounds to have a hands on experience. You can even try
to apply these code snippets in your own editor and play around with them. But don’t worry if
it doesn’t work out. You will be guided to apply your learnings in an editor in various chapters.
However, don’t hesitate to apply the learnings earlier on your own. You will only grow when facing
challenges.

As mentioned, there are guided hands on experiences in the book. There, you will be guided to solve
problems by using the techniques you have learned in the previous chapters. You will solve these
problems in an online editor, that is already prepared, or in your own editor. It should give you the
experience of applying your learnings beyond only reading a book. This book aims to go beyond
only being reading material. It’s supposed to be a practical hands-on guide that let’s you apply your
learnings in order to deepen your knowledge.

Be aware that the JS BIN26 online editor, that you are going to use occasionally, will not always
provide all functionalities from modern browsers. For instance, you might run into problems when
trying to apply JavaScript ES6 and beyond functionalities. That’s why I try to transition to an own
project setup in your editor as soon as possible. There you have the full control over your projects
and can continue working on the projects even after you read the book.

In addition, make sure to internalize each lesson learned before you continue with the next chapter.
The book is written in a way that the learnings build up on each other. Your knowledge around state
management will not only scale horizontally by using different techniques but also vertically by
using technique on technique. That’s why it is important to internalize each learning before your
continue to read.

25https://www.robinwieruch.de/lessons-learned-deep-work-flow/
26http://jsbin.com/

https://www.robinwieruch.de/lessons-learned-deep-work-flow/
https://www.robinwieruch.de/lessons-learned-deep-work-flow/
http://jsbin.com/
https://www.robinwieruch.de/lessons-learned-deep-work-flow/
http://jsbin.com/

Introduction ix

The React library is used as view layer library in this book to demonstrate the usage of state
management in modern applications. However, fortunately, a view layer is exchangeable. If you
are learning state management to apply it to another view layer library, such as Vue, you can try to
substitute React with Vue on your own. The book doesn’t want to dictate the view layer library or
framework. If you are brave, you can apply the learnings in your very own application where you
want to introduce state management while reading the book.

Another hint is to make notes while you read the book. You can write down questions where the
book doesn’t give you an answer and look them up afterward. Or you can write down your learnings
to internalize them. That is how I do it when I read a book. Last but not least, if you write down
feedback about the book, you can send me your notes afterward. I am highly interested to improve
the book all the time to keep the quality up.

It should be obvious by now that you will have the best outcome of this book by having a laptop on
your side. You can join the Slack Group27 to get help from others or to help others yourself. When
having a laptop on your side, you can directly apply your new learnings and confront yourself with
the hands-on chapters. As mentioned before, no one learned something by just reading a book.

27https://slack-the-road-to-learn-react.wieruch.com/

https://slack-the-road-to-learn-react.wieruch.com/
https://slack-the-road-to-learn-react.wieruch.com/

Local State Management
This chapter will guide you through state management in React without taking any external
state management library into account. You will revisit state management in React with only
this.setState() and this.state. It enables you to build medium sized applications without
complicating and over-engineering it. Not every application needs external state management in
the first place.

By revisiting the topic of local state management in React, you will get to know how to use the
local state in a React application. The chapter guides you through important topics when dealing
with state in React: controlled components, unidirectional data flow and asynchronous state. It will
teach you all these necessary topics before diving into state management with an external state
management library.

After revisiting the local state, you will get to know best practices and patterns to scale your state
management when using only local state. Even though you are not dependent on external state
management solutions yet, you can use a handful of those techniques to scale state management
with external libraries, too, which are described later on in this book.

At the end of the chapter, you will get to know the limits of local state management in React. The
topic itself is highly discussed in the community as you will learn in one of the final lessons of this
chapter. The chapter concludes in the problem of local state management to give you a motivation
to dive into one of the external state management solutions.

Local State Management 2

Definitions

Before we dive into state management, this chapter gives you general definitions and definitions for
state managements to build up a common vocabulary for state management for this book. It should
help you to follow the book effortlessly when reading it without leaving space for confusion.

Pure Functions

Pure functions is a concept from the functional programming paradigm. It says that a pure function
always returns the same output if given the same input. There is no layer in between that could alter
the output on the way when the input doesn’t change. The layer in between, that could possibly alter
the output, is called side-effect. Thus, pure functions have no side-effects. Two major benefits of
these pure functions are predictability and testability.

Immutability

Immutability is a concept of functional programming, too. It says that a data structure is immutable
when it cannot be changed. When there is the need to modify the immutable data structure, for
instance an object, you would always return a new object. Rather than altering the object at hand,
you would create a new object based on the old object and the modification. The old and new object
would have their own instances.

Immutable data structures have the benefit of predictability. For instance, when sharing an object
through the whole application, it could lead to bugs when altering the object directly, because every
stakeholder has a reference to this potentially altered object. It would be unpredictable what happens
when an object changes and a handful of stakeholders are dependent on this object. In a growing
application, it is difficult to oversee the places where the object is currently used by its reference.

The antagonist of immutability is called mutability. It says that an object can be modified.

State

State is a broad word in modern applications. When speaking about application state, it could be
anything that needs to live and be modified in the browser. It could be an entity state that was
retrieved from a backend application or a view state in the application, for instance, when toggling
a popup to show additional information.

I will refer to the former one as entity state and to the latter one as view state. Entity state is data
retrieved from the backend. It could be a list of authors or the user object describing the user that
is currently logged in to the application. View state, on the other hand, doesn’t need to be stored in
the backend. It is used when you open up a modal or switch a box from preview to edit mode.

When speaking about managing the state, meaning initializing, modifying and deleting state, it will
be coined under the umbrella term of state management. Yet, state management is a much broader

Local State Management 3

topic. While the mentioned actions are low-level operations, almost implementation details, the
architecture, best practices and patterns around state management stay abstract. State management
involves all these topics to keep your application state durable.

The Size of State

State can be an atomic object or one large aggregated object. When speaking about the view state,
that only determines whether a popup is open or closed, it is an atomic state object. When the
whole application state can be derived from on aggregated object, which includes all the atomic
state objects, it is called a global state object. Often, a global state object implies that it is accessible
from everywhere, but that’s not necessarily the case.

The state itself can be differentiated into local state and sophisticated state. The management of
this state is called local state management and sophisticated state management.

Local State

The naming local state is widely accepted in the web development community. Another term might
be internal component state.

Local state is bound to components. It lives in the view layer. It is not stored somewhere else. That’s
why it is called local state because it is colocated to the component.

In React, the local state is embraced by using this.state and this.setState(). But it can have
a different implementation and usage in other view layer or SPA solutions. The book explains and
showcases the local state in React before diving into sophisticated state management with external
libraries.

Sophisticated State

I cannot say that it is widely agreed on to call it sophisticated state in the web development
community. However, at some point you need a term to distinguish it from local state. That’s why
I often refer to it as sophisticated state. In other resources, you might find it referred to as external
state, because it lives outside of the local component or outside of the view layer.

Most often, sophisticated state is outsourced to libraries that are library or framework agnostic and
thus agnostic to the view layer. But most often they provide a bridge to access and modify state
from the view layer. When using only local state in a scaling application, you will allocate too much
state along your components in the view layer. However, at some point you want to separate these
concerns. That’s when sophisticated state comes into play.

Two libraries that are known for handling sophisticated state are called Redux and MobX. Both
libraries will be explained, discussed and showcased in this book.

Local State Management 4

Visibility of State

Since local state is only bound to the component instance, only the component itself is aware of
these properties being state. However, the component can share the state to its child components. In
React, the child components are unaware of these properties being state in their parent component.
They only receive these properties as props.

On the other hand, sophisticated state is often globally accessible. In theory, the state can be accessed
by each component. Often, it is not best practice to give every component access to the global state,
thus it is up to the developer to bridge only selected components to the global state object. All other
components stay unaware of the state and only receive properties as props to act on them.

Local State Management 5

Local State in React

The book uses React as view layer for demonstrating the local state. The following chapter focusses
on the local state in React before it dives into sophisticated state management with Redux andMobX.
As mentioned, the concept of local state should be known in other SPA solutions, too, and thus be
applicable in those solutions.

So, what does local state look like in a React component?

Code Playground

import React from 'react';

class Counter extends React.Component {

constructor(props) {

super(props);

this.state = {

counter: 0

};

}

render() {

return (

<div>

<p>{this.state.counter}</p>

</div>

);

}

}

The example shows a Counter component that has a counter property in the local state object. It
is defined with a value of 0 when the component gets instantiated by its constructor. In addition,
the counter property from the local state object is used in the render method of the component to
display its current value.

There is no state manipulation in place yet. Before you start to manipulate your state, you should
know that you are never allowed to alter the state directly: this.state.counter = 1. That would
be a direct mutation. Instead, you have to use the React component API to change the state explicitly
by using the this.setState() method.

Local State Management 6

Code Playground

import React from 'react';

class Counter extends React.Component {

constructor(props) {

...

this.onIncrement = this.onIncrement.bind(this);

this.onDecrement = this.onDecrement.bind(this);

}

onIncrement() {

this.setState({

counter: this.state.counter + 1

});

}

onDecrement() {

this.setState({

counter: this.state.counter - 1

});

}

render() {

...

}

}

The class methods can be used in the render() method to trigger the local state changes.

Code Playground

import React from 'react';

class Counter extends React.Component {

...

render() {

return (

<div>

<p>{this.state.counter}</p>

<button type="button" onClick={this.onIncrement}>

Local State Management 7

Increment

</button>

<button type="button" onClick={this.onDecrement}>

Decrement

</button>

</div>

);

}

}

Now ,the button onClick handler should invoke the class methods to alter the state by either
incrementing or decrementing the counter value.

The update functionality with this.setState() is performing a shallow merge of objects. What
does a shallow merge mean? Imagine you had the following state in your component.

Code Playground

this.state = {

authors: [...],

articles: [...],

};

When updating the state only partly, for instance the authors by doing the following, the articles
are left intact

Code Playground

this.setState({

authors: [

{ name: 'Robin', id: '1' }

]

});

It only updates the authors without touching the articles. That’s a shallow merge. It simplifies
the local state management by not always keeping an eye on all properties in the local state.

Stateful and Stateless Components

Local state can only be used in React ES6 class components. The component becomes a stateful
component when state is used. Otherwise, it can be called stateless component even though it is
still a React ES6 class component.

Local State Management 8

On the other hand, functional stateless components have no state, because, as the name implies,
they are only functions and thus, they are stateless. In a stateless component state can only be passed
as props from a parent component. In addition, callback functions could be passed down to alter the
state in the parent component. A functional stateless component for the Counter example could look
like the following:

Code Playground

import React from 'react';

function CounterPresenter(props) {

return (

<div>

<p>{props.counter}</p>

<button type="button" onClick={props.onIncrement}>

Increment

</button>

<button type="button" onClick={props.onDecrement}>

Decrement

</button>

</div>

);

}

Now only the props from the parent component would be used in this functional stateless
component. The counter prop would be displayed and the two callback functions, onIncrement()
and onDecrement() would be used for the buttons. However, the functional stateless component is
not aware whether the passed properties are state, props or some other derived properties. The origin
of the props doesn’t need to be in the parent component after all, it could be somewhere higher up
the component tree. The parent component would only pass the properties or derived properties
along the way. In addition, the component is unaware of what the callback functions are doing. It
doesn’t know that these alter the local state of the parent component.

After all, the callback functions in the stateless component would make it possible to alter the state
somewhere above in one of the parent components. Once the state was manipulated, the new state
flows down as props into the child component again. The new counter prop would be displayed
correctly, because the render method of the child component runs again with the incoming changed
props.

The example shows how local state can traverse down from one component to the component tree.
To make the example with the functional stateless component complete, let’s quickly show what
a potential parent component, that manages the local state, would look like. It is a React ES6 class
component in order to be stateful.

Local State Management 9

Code Playground

import React from 'react';

class CounterContainer extends React.Component {

constructor(props) {

super(props);

this.state = {

counter: 0

};

this.onIncrement = this.onIncrement.bind(this);

this.onDecrement = this.onDecrement.bind(this);

}

onIncrement() {

this.setState({

counter: this.state.counter + 1

});

}

onDecrement() {

this.setState({

counter: this.state.counter - 1

});

}

render() {

return <CounterPresenter

counter={this.state.counter}

onIncrement={this.onIncrement}

onDecrement={this.onDecrement}

/>

}

}

It is not by accident that the suffixes in the naming of both Counter components are Container

and Presenter. It is called the container and presentational component pattern28. It is most often
applied in React, but could live in other component centred libraries and frameworks, too. If you have
never heard about it, I recommend reading the referenced article. It is a widely used pattern, where

28https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

Local State Management 10

the container component deals with “How things work” and the presenter component deals with
“How things look”. In this case, the container component cares about the state while the presenter
component only displays the counter value and provides a handful of click handler yet without
knowing that these click handlers manipulate the state.

Container components are the ideal candidates to manage state while the presenter components
only display it and act on callback functions. You will encounter these container components more
often in the book, when dealing with the concepts of higher order components, that could potentially
manage local state, and connected components.

Props vs. State

The previous example made clear that there is a difference between state and props in React. When
properties are passed to a child component, whether it is state, props or derived properties, the child
component isn’t aware of the kind of properties. It sees the incoming properties as props. That’s
perfect, because the component shouldn’t care at all about the kind of properties. It should only
make use of them as simple props.

The props come from a parent component. In the parent component these props can be state, props
or derived properties. It depends on the parent component, if it manages the properties itself (state),
if it gets the properties from a parent component itself (props) or if it derives new properties from
the incoming props coming from its parent component along the way (derived properties).

After all, you can’t modify props. Props are only properties passed from a parent component. On
the other hand, the local state lives in the component itself. You can access it by using this.state,
modify it by using this.setState() and pass it down as props to child components.

When one of these objects changes, whether it is the props that come from the parent component
or the state in the component, the update lifecycle methods of the component will run. One of these
lifecycle methods is the render()method that updates your component instance based on the props
and state. The correct values will be used and displayed after the update ran in your component.

When you start to use React, it might be difficult to identify props and state. Personally, I like the
rules in the official React documentation29 to identify state.

• Are the properties passed from the parent component? If yes, the likelihood is high that they
aren’t state. Though it is possible to save props as state, there are little use cases. It should be
avoided to save props as state. Use them as props as they are.

• Are the properties unchanged over time? If yes, they don’t need to be stateful, because they
don’t get modified.

• Are the properties derivable from local state or props? If yes, you don’t need them as state,
because you can derive them. If you allocated extra state, the state has to be managed and can
get out of sync when you miss to derive the new properties at some point.

29https://facebook.github.io/react/docs/thinking-in-react.html

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

Local State Management 11

Form State

A common use case in applications is to use HTML forms. For instance, you might need to retrieve
user information like a name or credit card number or submit a search query to an external API.
Forms are used everywhere in web applications.

There are two ways to use forms in React. You can use the ref attribute or local state. It is
recommended to use the local state approach, because the ref attribute is reserved for only a few
use cases. If you want to read about these use cases when using the ref attribute, I encourage you to
read the following article: When to use Ref on a DOM node in React30.

The following code snippet is a quick demonstration on how form state can be used by using the
ref attribute. Afterward, the code snippet will get refactored to use the local state which is the best
practice anyway.

Code Playground

import React from 'react';

class Search extends React.Component {

constructor(props) {

super(props);

this.onSubmit = this.onSubmit.bind(this);

}

onSubmit(event) {

const { value } = this.input;

// do something with the search value

// e.g. propagate it up to the parent component

this.props.onSearch(value);

event.preventDefault();

}

render() {

return (

<form onSubmit={this.onSubmit}>

<input

ref={node => this.input = node}

type="text"

/>

30https://www.robinwieruch.de/react-ref-attribute-dom-node/

https://www.robinwieruch.de/react-ref-attribute-dom-node/
https://www.robinwieruch.de/react-ref-attribute-dom-node/

Local State Management 12

<button type="submit">

Search

</button>

</form>

);

}

}

The value from the input node is retrieved by using the reference to the DOM node. It happens in
the onSubmit()method. The reference is created by using the ref attribute in the render()method.

Now let’s see how to make use of local state to embrace best practices rather than using the reserved
ref attribute.

Code Playground

import React from 'react';

class Search extends React.Component {

constructor(props) {

super(props);

this.state = {

query: ''

};

this.onChange = this.onChange.bind(this);

this.onSubmit = this.onSubmit.bind(this);

}

onChange(event) {

const { value } = event.target;

this.setState({

query: value

});

}

onSubmit(event) {

const { query } = this.state;

// do something with the search value

// e.g. propagate it up to the parent component

Local State Management 13

this.props.onSearch(query);

event.preventDefault();

}

render() {

return (

<form onSubmit={this.onSubmit}>

<input

onChange={this.onChange}

type="text"

/>

<button type="submit">

Search

</button>

</form>

);

}

}

You don’t need to make use of the ref attribute anymore. You can solve the problem by using local
state only. The example demonstrates it with only one input field yet it can be used with multiple
input fields, too. You would only need to allocate more properties in the local state.

Controlled Components

The previous example of using form state with local state has one flaw. It doesn’t make use of
controlled components. Naturally, a HTML input field holds its own state. When you enter a value
into the input field, the DOM node knows about the value.

However, the value lives in your local state, too. You have it in both, the native DOM node state and
local state. But you want to make use of a single source of truth. It is a best practice to overwrite the
native DOM node state by using the value attribute and the value from the local state.

Let’s consider the previous example again. The input field had no value attribute assigned. By
using the native value attribute and passing the local state as value, you convert an uncontrolled
component to a controlled component.

Local State Management 14

Code Playground

import React from 'react';

class Search extends React.Component {

...

render() {

return (

<form onSubmit={this.onSubmit}>

<input

value={this.state.query}

onChange={this.onChange}

type="text"

/>

<button type="submit">

Search

</button>

</form>

);

}

}

Now the value comes from the local state as single source of truth. It cannot get out of sync with
the native DOM node state.

Unidirectional Data Flow

In the previous example, you experienced a typical unidirectional data flow. The Flux architecture,
the underlying architecture for several sophisticated state management solutions, coined the term
unidirectional data flow. You will get to know more about the Flux architecture in a later chapter.
But the essence of an unidirectional data flow is embraced by local state in React, too.

State in React flows only in one direction. State gets updated by using this.setState() and is
displayed due to the render() lifecycle method by accessing this.state. Then again, it can be
updated via this.setState() and a component re-renders.

The previous example, where you have used controlled components, shows the perfect loop of the
unidirectional data flow. The input field triggers the onChange handler when the input changes. The
handler alters the local state. The changed local state triggers an update lifecycle of the component.
The update lifecycle runs the render() lifecycle method again. The render() method makes use of

Local State Management 15

the updated state. The state flows back to the input field to make it a controlled component. The
loop is closed. A new loop can be triggered by typing something into the input field again.

The unidirectional data flow makes state management predictable and maintainable. The best
practice already spread to other state libraries, view layer libraries and single page application
solutions. In the previous generation of SPAs, most often other mechanics were used.

For instance, in Angular 1.x you had to use two-way data binding in a model-view-controller (MVC)
architecture. That means, once you changed the value in the view, let’s say in an input field by
typing something, the value got changed in the controller. But it worked vice versa, too. Once you
had changed the value in the controller programmatically, the view, to be more specific the input
field, displayed the new value.

You might wonder: What’s the problem with this approach? Why is everybody using unidirectional
data flow instead of bidirectional data flow now?

Unidirectional vs. Bidirectional Data Flow

React embraces unidirectional data flow. In the past, frameworks like Angular 1.x embraced
bidirectional data flow. It was known as two-way data binding. It was one of the reasons that
made Angular popular in the first place. But it failed in this particular area, too. Especially, in my
opinion, this particular flaw led a lot of people to switch to React. But at this point I don’t want
to get too opinionated. So why did the bidirectional data flow fail? Why is everyone adopting the
unidirectional data flow?

The three advantages in unidirectional data flow over bidirectional data flow are predicability,
maintainability and performance.

Predicability: In a scaling application, state management needs to stay predictable. When you alter
your state, it should be clear which components care about it. It should also be clear who alters
the state in the first place. In an unidirectional data flow one stakeholder alters the state, the state
gets stored, and the state flows down from one place, for instance a stateful component, to all child
components that are interested in the state.

Maintainability: When collaborating in a team on a scaling application, one requirement of state
management is predictability. Humans are not capable to keep track of a growing bidirectional data
flow. It is a limitation by nature. That’s why the state management stays more maintainable when
it is predictable. Otherwise, when people cannot reason about the state, they introduce inefficient
state handling.

But maintainability doesn’t come without any cost in a unidirectional data flow. Even though the
state is predictable, it often needs to be refactored thoughtfully. In a later chapter, you will read
about those refactorings such as lifting state or higher order components for local state.

Performance: In a unidirectional data flow, the state flows down the component tree. All compo-
nents that depend on the state have the chance to re-render. Contrary to a bidirectional data flow,
it is not always clear who has to update according to state changes. The state flows in too many

Local State Management 16

directions. The model layer depends on the view layer and the view layer depends on the model
layer. It’s a vice versa dependency that leads to performance issues in the update lifecycle.

These three advantages show the benefits of using a unidirectional data flow over an bidirectional
data flow. That’s why so many state management solutions thrive for the former one nowadays.

Local State Management 17

Scaling Local State in React

You should know about all the basics in React’s local state management by now. However, you will
notice that there are more patterns and best practices out there to apply local state in a scaling
application. The following chapter gives you insights into these topics.

Lifting State

In a scaling application, you will notice that you pass a lot of state down to child components as
props. These props are often passed down multiple component levels. That’s how state is shared
vertically. Yet, the other way around, you will notice that more components need to share the same
state. That’s how state is shared horizontally. These two scaling issues, sharing state vertically and
horizontally, are common in local state management. Therefore you can lift the state up and down
keeping your local state architecture maintainable. Lifting the state prevents to share too much or
too less state in your component tree. Basically, it is a refactoring that you have to do once in a while
to keep your components maintainable and focused on only consuming the state that they need to
consume.

In order to experience up and down lifting of local state, the following chapter will demonstrate it
with two examples. The first example that demonstrates the uplifting of state is called: “Search a
List”-example. The second example that demonstrates the downlifting of state is called “Archive in
a List”-example.

The “Search a List”-example has three components. Two sibling components, a Search component
and a List component, that are used in an overarching SearchableList component.

First, the Search component:

Code Playground

import React from 'react';

class Search extends React.Component {

constructor(props) {

super(props);

this.state = {

query: ''

};

this.onChange = this.onChange.bind(this);

}

onChange(event) {

Local State Management 18

const { value } = event.target;

this.setState({

query: value

});

}

render() {

return (

<div>

{this.props.children} <input

type="text"

value={this.state.query}

onChange={this.onChange}

/>

</div>

);

}

}

Second, the List component:

Code Playground

function List({ list }) {

return (

{list.map(item => <li key={item.id}>{item.name})}

);

}

Third, the SearchableList component:

Local State Management 19

Code Playground

function SearchableList({ list }) {

return (

<div>

<Search>Search List:</Search>

<List list={list} />

</div>

);

}

While the Search component is a stateful ES6 class component, the List component is only
a stateless functional component. The parent component that combines the List and Search

components into a SearchableList component is a stateless functional component too.

However, the example doesn’t work. The Search component knows about the query that could be
used to filter the list, but the List component doesn’t know about it. You have to lift the state of
the Search component up to the SearchableList to make the query state accessible for the List

component in order to filter the list. You want to share the query state in both List component and
Search component.

In order to lift the state up, the SearchableList becomes a stateful component. You have to refactor
it to an React ES6 class component. On the other hand, you can refactor the Search component to a
functional stateless component, because it doesn’t need to be stateful anymore. The stateful parent
component takes care about its whole state. In other cases the Search component might stay as a
stateful ES6 class component, because it still manages own state. But not in this example.

First, the Search component:

Code Playground

function Search({ query, onChange, children }) {

return (

<div>

{children} <input

type="text"

value={query}

onChange={onChange}

/>

</div>

);

}

Second, the SearchableList component:

Local State Management 20

Code Playground

import React from 'react';

class SearchableList extends React.Component {

constructor(props) {

super(props);

this.state = {

query: ''

};

this.onChange = this.onChange.bind(this);

}

onChange(event) {

const { value } = event.target;

this.setState({

query: value

});

}

render() {

const { list } = this.props;

const { query } = this.state;

return (

<div>

<Search

query={query}

onChange={this.onChange}

>

Search List:

</Search>

<List list={(list || []).filter(byQuery(query))} />

</div>

);

}

}

function byQuery(query) {

return function(item) {

Local State Management 21

return !query ||

item.name.toLowerCase().includes(query.toLowerCase());

}

}

After you have lifted the state up, the parent component takes care about the local state management.
Both child components don’t need to take care about it anymore. You have lifted the state up to share
the local state across the child components. The list gets filtered by the search query before it reaches
the List component.

Let’s get to the second example: the “Archive in a List”-example. It builds up on the previous example,
but this time the List component has the extended functionality to archive an item in the list.

First, the List component:

Code Playground

function List({ list, onArchive }) {

return (

{list.map(item =>

<li key={item.id}>

{item.name}

<button

type="button"

onClick={() => onArchive(item.id)}

>

Archive

</button>

)}

);

}

Second, the SearchableList component:

Local State Management 22

Code Playground

import React from 'react';

class SearchableList extends React.Component {

constructor(props) {

super(props);

this.state = {

query: '',

archivedItems: []

};

this.onChange = this.onChange.bind(this);

this.onArchive = this.onArchive.bind(this);

}

...

onArchive(id) {

const { archivedItems } = this.state;

this.setState({

archivedItems: [...archivedItems, id]

});

}

render() {

const { list } = this.props;

const { query, archivedItems } = this.state;

const filteredList = list

.filter(byQuery(query))

.filter(byArchived(archivedItems));

return (

<div>

...

<List

list={filteredList}

onArchive={this.onArchive}

/>

</div>

Local State Management 23

);

}

}

...

function byArchived(archivedItems) {

return function(item) {

return !archivedItems.includes(item.id);

}

}

The previous example was extended to facilitate the archiving of items in a list. Now, the List

component receives all the necessary properties: an onArchive callback and the list, filtered by query
and archivedItems.

You might see already the flaw. The SearchableList takes care about the archiving functionality.
However, it doesn’t need the functionality itself. It only passes all the state to the List component
as props. It manages the state on behalf of the List component. In a scaling application it would
make sense to lift the state down to the List component. Even though the List component becomes
a stateful component afterward, it is step in the right direction keeping the local state maintainable
in the long run.

First, the List component:

Code Playground

import React from 'react';

class List extends React.Component {

constructor(props) {

super(props);

this.state = {

archivedItems: []

};

this.onArchive = this.onArchive.bind(this);

}

onArchive(id) {

const { archivedItems } = this.state;

this.setState({

Local State Management 24

archivedItems: [...archivedItems, id]

});

}

render() {

const { list } = this.props;

const { archivedItems } = this.state;

const filteredList = list

.filter(byArchived(archivedItems));

return (

{filteredList.map(item =>

<li key={item.id}>

{item.name}

<button

type="button"

onClick={() => this.onArchive(item.id)}

>

Archive

</button>

)}

);

}

}

Second, the SearchableList component:

Local State Management 25

Code Playground

import React from 'react';

class SearchableList extends React.Component {

constructor(props) {

super(props);

this.state = {

query: ''

};

this.onChange = this.onChange.bind(this);

}

...

render() {

const { list } = this.props;

const { query } = this.state;

const filteredList = list

.filter(byQuery(query));

return (

<div>

...

<List list={filteredList} />

</div>

);

}

}

Now, you have seen both variations of lifting state: lifting state up and lifting state down.

In the first example, the “Search a List”-example, the state had to be lifted up to share the query

property in two child components. The Search component had to manipulate the state by using
a callback, but also had to use the query to be a controlled component. On the other hand, the
‘SearchableList’ component had to filter the list by using the query property. Another solution would
have been to pass down the query property to the List component and let the component deal with
the filtering itself.

In the second example, the “Archive in a List”-example, the state could be lifted down to keep the
state maintainable in the long run. The parent component shouldn’t be concerned about state that

Local State Management 26

isn’t used by the parent component itself and isn’t shared across multiple child components. Because
only one child component cared about the archived items, it was a clean code refactoring to lift the
state down.

In conclusion, lifting state allows you to keep your local state management maintainable. Lifting
state should be used to give components access to all the state they need, but not to more state
than they need. Sometimes you have to refactor components from a functional stateless component
to a React ES6 class component or vice versa. It’s not always possible, because a component that
could become possibly a stateless functional component could still have other stateful properties.

Functional State

In all recent chapters, there is a mistake in using this.setState(). It is important to know that
this.setState() is executed asynchronously. React batches all the state updates. It executes them
after each other for performance optimization. Thus this.setState() comes in two versions.

In its first version, the this.setState() method takes an object to update the state. As explained
in a previous chapter, the merging of the object is a shallow merge. For instance, when updating
authors in a state object of authors and articles, the articles stay intact. The previous examples
have already used this approach.

Code Playground

this.setState({

...

});

In its second version, the this.setState() method takes a function. The function has the previous
state and props in the function signature.

Code Playground

this.setState((prevState, props) => ({

...

}));

So, what’s the flaw in using this.setState() with an object? In several examples in the last
chapters, the state was updated based on the previous state or props. However, this.setState()
executes asynchronously. Thus the state or props that are used to perform the update could be stale
at this point in time. It could lead to bugs in your local state management, because you would update
the state based on stale properties. When using the functional approach to update the local state, the
state and props at the time of execution are used when this.setState() performs asynchronously.
Let’s revisit one of the previous examples:

Local State Management 27

Code Playground

import React from 'react';

class CounterContainer extends React.Component {

constructor(props) {

super(props);

this.state = {

counter: 0

};

this.onIncrement = this.onIncrement.bind(this);

this.onDecrement = this.onDecrement.bind(this);

}

onIncrement() {

this.setState({

counter: this.state.counter + 1

});

}

onDecrement() {

this.setState({

counter: this.state.counter - 1

});

}

render() {

return <CounterPresenter

counter={this.state.counter}

onIncrement={this.onIncrement}

onDecrement={this.onDecrement}

/>

}

}

Executing one of the class methods, onIncrement() or onDecrement(), multiple times could lead
to a bug. Because both methods depend on the previous state, it could use a stale state when the
asynchronous update wasn’t executed but the method invoked another time.

Local State Management 28

Code Playground

this.setState({ counter: this.state.counter + 1 }); // this.state: { counter: 0 }

this.setState({ counter: this.state.counter + 1 }); // this.state: { counter: 0 }

this.setState({ counter: this.state.counter + 1 }); // this.state: { counter: 0 }

// updated state: { counter: 1 }

// instead of: { counter: 3 }

It becomes even more error prone when multiple functions that use this.setState() depend on
the previous state. You can refactor the example to use the functional state updating approach.

Code Playground

import React from 'react';

class CounterContainer extends React.Component {

constructor(props) {

...

}

onIncrement() {

this.setState(prevState => ({

counter: prevState.counter + 1

}));

}

onDecrement() {

this.setState(prevState => ({

counter: prevState.counter - 1

}));

}

render() {

...

}

}

The functional approach opens up two more benefits. First, the function that updates the state is a
pure function. There are no side-effects. The function always will return the same output when
given the same input. It makes it predictable and uses the benefits of functional programming.
Second, since the function is pure, it can be tested easily in an unit test and independently from the
component. It gives you the opportunity to test your local state updates. You only have to extract
the function from the component.

Local State Management 29

Code Playground

import React from 'react';

const incrementUpdate = prevState => ({

counter: prevState.counter + 1

});

const decrementUpdate = prevState => ({

counter: prevState.counter - 1

});

class CounterContainer extends React.Component {

constructor(props) {

...

}

onIncrement() {

this.setState(incrementUpdate);

}

onDecrement() {

this.setState(decrementUpdate);

}

render() {

...

}

}

Now, you could test the pure functions. After all you might wonder, when to use the object and
when to use the function in this.setState()? The recommended rules of thumb are:

• Always use this.setState() with a function when you depend on previous state or props.
• Only use this.setState() with an object when you don’t depend on previous properties.
• In case of uncertainty, default to use this.setState() with a function.

Higher Order Components

Higher order components (HOCs) can be used for a handful of use cases. One of these use case would
be to enable an elegant way of conditional rendering31. But this book is about state management, so

31https://www.robinwieruch.de/gentle-introduction-higher-order-components/

https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/

Local State Management 30

why not use it to manage the local state of a component? Let’s revisit an adjusted example of the
“Archive in a List”-example.

Code Playground

import React from 'react';

class ArchiveableList extends React.Component {

constructor(props) {

super(props);

this.state = {

archivedItems: []

};

this.onArchive = this.onArchive.bind(this);

}

onArchive(id) {

const { archivedItems } = this.state;

this.setState({

archivedItems: [...archivedItems, id]

});

}

render() {

const { list } = this.props;

const { archivedItems } = this.state;

const filteredList = list

.filter(byArchived(archivedItems));

return (

{filteredList.map(item =>

<li key={item.id}>

{item.name}

<button

type="button"

onClick={() => onArchive(item.id)}

Local State Management 31

>

Archive

</button>

)}

);

}

}

function byArchived(archivedItems) {

return function(item) {

return !archivedItems.includes(item.id);

};

}

The ArchiveableList has two purposes. On the one hand, it is a pure presenter that shows the items
in a list. On the other hand, it is stateful container that keeps track of the archived items. Therefore,
you could split it up into representation and logic thus into presentational and container component.
However, another approach could be to transfer the logic, mainly the local state management, into a
higher order component. Higher order components are reusable and thus the local state management
could become reusable.

Code Playground

import React from 'react';

function byArchived(archivedItems) {

return function(item) {

return !archivedItems.includes(item.id);

};

}

function withArchive(Component) {

class WithArchive extends React.Component {

constructor(props) {

super(props);

this.state = {

archivedItems: []

};

Local State Management 32

this.onArchive = this.onArchive.bind(this);

}

onArchive(id) {

const { archivedItems } = this.state;

this.setState({

archivedItems: [...archivedItems, id]

});

}

render() {

const { list } = this.props;

const { archivedItems } = this.state;

const filteredList = list

.filter(byArchived(archivedItems));

return <Component

list={filteredList}

onArchive={this.onArchive}

/>

}

}

return WithArchive;

}

In return the List component would only display the list and receives a function in its props to
archive an item.

Code Playground

function List({ list, onArchive }) {

return (

{list.map(item =>

<li key={item.id}>

{item.name}

<button

Local State Management 33

type="button"

onClick={() => onArchive(item.id)}

>

Archive

</button>

)}

);

}

Now you can compose the list facilitating component with the functionality to archive items in a
list.

Code Playground

import React from 'react';

function byArchived(archivedItems) { ... }

function withArchive(Component) { ... }

function List({ list, onArchive }) { ... }

const ListWithArchive = withArchive(List);

function App({ list }) {

return <ListWithArchive list={list} />

}

The List component would only display the items. The ability to archive an item in the List

component would be opt-in with a higher order component called withArchive. In addition, the
HOC can be reused in other List components too for managing the state of archived items. After
all, higher order components are great to extract local state management from components and to
reuse the local state management in other components.

The Provider Pattern

The provider pattern in React is a powerful concept. You will not often see it when using plain
React, but might consider using it when scaling your application in React. Basically it takes the
clutter away of passing mandatory props, that are needed by every component, down your whole

Local State Management 34

component tree. In addition, the provider pattern is later on used in sophisticated state management
libraries to glue the state layer (Redux, MobX) to the (React) view layer.

There are two things you have to know about React before you can implement your own provider
pattern in React: children and context.

When you have already learned to use plain React, you should know about React’s children. Basically
they enable you to nest JSX into each other same as you would nest HTML tags into each other.

Code Playground

class App extends Component {

render() {

return (

<Search

query={this.state.query}

onChange={this.onChange}

>

Search the List

</Search>

);

}

}

function Search({ query, onChange, children }) {

return (

<div>

{children} <input

type="text"

value={query}

onChange={onChange}

/>

</div>

);

}

The component would be displayed as an input field with a label next to it that says “Search the
List”.

React’s Context as Implicit Container

The second requirement before implementing the provider pattern in React is React’s context. React’s
context is not highly advertised. It is even discouraged to use it. The team behind React keeps it open
if the API of the context in React changes in the future.

Local State Management 35

Nevertheless, the context in React is a powerful feature. Do you remember the last time when
you had to pass props several components down your component tree? In plain React, you can
be confronted often with this issue. It can happen that a couple of these props are even mandatory
for each child component. Thus you would need to pass the props down to each child component.
In return, this would clutter every component passing down these props.

When these props become mandatory, React’s context gives you a way out of this mess. Instead of
passing down the props explicitly down each component, you can hide props, that are necessary for
each component, in the React context object and pass them implicitly down to each component. The
React context object traverses invisible down the component tree. When a component needs access
to the context object, it can access it.

But you shouldn’t overdo it with React’s context. So what are use cases for this approach? For
instance, your application could have a configurable colored theme. Each component should be
colored depending on the configuration. The configuration is fetched once from your server, but
now you want to make this implicitly accessible for all components. Therefore you could use React’s
context to give every component access to the colored theme.

How is React’s context provided and consumed? Imagine you would have component A as root
component that provides the context and component C as one of the child components that consumes
the context. But in between is component D. The application has a colored theme that can be used to
style your components. Thus, you want to make the colored theme available for every component
via the React context without passing it as mandatory props through each component.

In your A component you provide the context. It is a hardcoded colored theme property in this case,
but it can be anything from component state to component props. Component A display component
D but makes the context available to all its children.

Code Playground

class A extends React.Component {

getChildContext() {

return {

coloredTheme: "green"

};

}

render() {

return <D />;

}

}

A.childContextTypes = {

coloredTheme: PropTypes.string

};

Local State Management 36

In your component C, somewhere below component D, you could consume the context object. Notice
that component A doesn’t need to pass down anything via component D in the props.

Code Playground

class C extends React.Component {

render() {

return (

<div style={{ color: this.context.coloredTheme }}>

{this.children}

</div>

);

}

}

C.contextTypes = {

coloredTheme: PropTypes.string

};

By using the colored theme property from this.context, the component can derive its style. That
way every component that needs to be styled according to the colored theme could get the necessary
information from React’s context object. You can read more about React’s context in the official
documentation32.

Combining Children and Context as Provider

Both functionalities of React, context and children, are necessary to implement the provider pattern
in React. These were the basics. Now you are able to implement it. Basically for the provider pattern
there needs to be one part in the pattern that makes the properties accessible in the context and
another part where components consume the context.

Let’s start with the former: a Provider component.

32https://facebook.github.io/react/docs/context.html

https://facebook.github.io/react/docs/context.html
https://facebook.github.io/react/docs/context.html
https://facebook.github.io/react/docs/context.html

Local State Management 37

Code Playground

class ThemeProvider extends React.Component {

getChildContext() {

return {

coloredTheme: this.props.coloredTheme

};

}

render() {

return <div>{this.props.children}</div>;

}

}

ThemeProvider.childContextTypes = {

coloredTheme: PropTypes.string

};

The Provider component only sets the colored theme from the incoming props. In addition, it only
renders its children and doesn’t add anything to the JSX.

After declaring the Provider component, you can use it anywhere in your React component tree. It
makes most sense to use it at the top of your component hierarchy to make the context, the colored
theme, accessible to everyone.

Code Playground

const coloredTheme = "green";

// hardcoded theme

// however, imagine the configuration is located somewhere else

// and would be different for every user of your application

// it would need to be fetched first

// and varies depending on the app user

ReactDOM.render(

<ThemeProvider coloredTheme={coloredTheme}>

<App />

</ThemeProvider>,

document.getElementById('app')

);

Now, every child component can consume the colored theme provided by the ThemeProvider

component. It doesn’t need to be the direct child, in this case the App component, but any component
down the component tree.

Local State Management 38

Code Playground

class App extends React.Component {

render() {

return (

<div>

<Paragraph>

That's how you would use children in React

</Paragraph>

</div>

);

}

}

class Paragraph extends React.Component {

render() {

const { coloredTheme } = this.context;

return (

<p style={{ color: coloredTheme }}>

{this.props.children}

</p>

);

}

}

Paragraph.contextTypes = {

coloredTheme: PropTypes.string

};

That’s basically it for the provider pattern. You have the Provider component that makes properties
accessible in React’s context and components that consume the context. How does this relate to
state management? Basically the provider pattern is often used, when using a sophisticated state
management solution that makes the state object(s) accessible in your view layer via React’s context.
The whole state can be accessed in each component. Perhaps you will never implement the provider
pattern on your own, but you will most likely use it from a external library when you use a
sophisticated state management solution such as Redux or MobX later on. So keep it in mind.

Local State Management 39

Persistence in State

State in applications is often not persistent. When your application starts, there is often an initial
state. The state updates when the user interacts with the application or data arrives from a backend
application. However, you might wonder whether there is a way to persist the state? The question
applies to both, local state management and sophisticated state management later on.

The obvious answer to this question would be to implement a backend application with a database
to persist the state. Extracting the state from your application is called dehydrating state. Now,
every time your application bootstraps, you would retrieve the state from the backend that keeps
it in a database. Once the state arrives in the response asynchronously, you would rehydrate state
into your application.

While the dehydration of the state could happen any time your application is running, the
rehydration would take place when your components mount. The best place to do it in React would
be the componentDidMount() lifecycle method. Take for example the ArchiveableList component.
It could retrieve all the already archived unique identifiers of items on componentDidMount() and
rehydrate it to the local state.

Code Playground

import React from 'react';

class ArchiveableList extends React.Component {

constructor(props) {

...

}

onArchive(id) {

...

}

componentDidMount() {

fetch('path/to/archived/items')

.then(response => response.json())

.then(archivedItems => this.setState(rehydrateArchivedItems(archivedItems)\

));

}

render() {

...

}

}

Local State Management 40

function rehydrateArchivedItems(archivedItems) {

return function(prevState) {

return {

archivedItems: [

...prevState.archivedItems,

...archivedItems

]

};

};

}

Now, every time the component initializes, the persistent archived items will get rehydrated into
the application state.

The dehydration could happen anytime, but to avoid inconsistencies, in the example of archived
items, the dehydration would take place when an item gets archived. It is a usual request to the
backend to save the item as being archived.

The rehydration and dehydration of state are most often unconscious steps in modern applications.
It is common sense to retrieve all the necessary data from the backend when your application
bootstraps and to update the data when something has changed. But you can keep the rehydration
and dehydration of state in mind to keep your application state in sync with your backend data as
single source of truth.

Local Storage

Is there a more lightweight solution compared to a backend application? You could use the native
browser API. To be more specific, most of the modern browser have a storage functionality to persist
data. It is the lightweight version of a database that is used in the browser. Of course, it is only visible
to the user of the browser and cannot be distributed to other users.

Modern browsers have access to the local storage33 and session storage34. Both work the same, but
there is one difference in their functionalities. While the local storage keeps the data even when the
browser is closed, the session storage expires once the browser closes. Both storages work the same
by using key value pairs.

33https://developer.mozilla.org/en/docs/Web/API/Window/localStorage
34https://developer.mozilla.org/en/docs/Web/API/Window/sessionStorage

https://developer.mozilla.org/en/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en/docs/Web/API/Window/sessionStorage

Local State Management 41

Code Playground

// Save data to localStorage

localStorage.setItem('key', 'value');

// Get saved data from localStorage

var data = localStorage.getItem('key');

// Remove saved data from localStorage

localStorage.removeItem('key');

// Remove all saved data from localStorage

localStorage.clear();

In the end, you can apply them the sameway as you did in the previous ArchiveableList component
that used the backend request to retrieve the data. Only that the ArchiveableList component would
use the storage instead of the backend to retrieve the state. If you are keen to explore the usage with
the local storage in React, you can read more about it in this article35.

Caching in State

The local state, later on the sophisticated state as well, can be used as a cache for your application.
A cache would make recurring requests to retrieve data from a backend redundant, because they
would return the same data as before and the data is already cached in the state.

Imagine your application has an interface to search for popular stories on a news platform. The news
platform has an open API that you can use to retrieve those popular stories. Your own application
that consumes the API of this platform would only have a search field to search for popular stories
from the platform and a list to display the stories once you have searched for them.

Next, imagine you made your first request searching popular stories about “React”. You are not
satisfied with the search result, because you wanted to be more specific, and search again for “React
Local State”. Still, no satisfying search result. Now the search result for “React Local State” is visible
in your application. Next, you want to head back to search for “React” stories again. Your application
makes a third request to retrieve the “React” stories from the platform API. In a perfect world, the
application would know that you have already searched for “React” stories before. That’s where
caching comes into play. The third request could have been avoided if the application had cached
the search results.

Such a fluctuant cache solution is not difficult to implement with a local state. Bear in mind that
it would work with a sophisticated state management layer that is explained later in the book, too.
When searching for the stories, you already have a unique identifier which you can use as a key in an

35https://www.robinwieruch.de/local-storage-react/

https://www.robinwieruch.de/local-storage-react/
https://www.robinwieruch.de/local-storage-react/

Local State Management 42

object to store the search result in the local state. The unique identifier is your search term. It would
be either “React” or “React Local State” considering the previous example. The value corresponding
to the key would be the search result. In the example, it would be the popular stories about “React”
and “React Local Storage”. After all, your cache object in the local state might be similar to this:

Code Playground

this.state = {

...

searchCache: {

React: [...],

ReactLocalState: [...],

}

}

Every time your application performs a search request, the key value pair in the cache object in your
local state would be filled. Before you make a new request, the cache would be checked whether the
search term was already available as a key. If the key is available, the request would be suppressed
and the cache result would be used instead. If the key is not available, a request would be made.
After the request succeeded, the search term would be saved as key and the search result would be
saved as value for the key in the local state.

The book doesn’t give you an in-depth implementation of the cache solution. If you did read the
Road to learn React36, you will already know how to implement such a cache in plain React with
local state. In one of its lessons, the book uses a cache in a more elaborated way to cache paginated
search results efficiently in the local state.

36https://www.robinwieruch.de/the-road-to-learn-react/

https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/the-road-to-learn-react/

Local State Management 43

Transition to Sophisticated State

By now you have learned about the basics in local state management and how to scale it in growing
application with a variety of techniques and best practices. The next chapters will give you a
transition from local state management to sophisticated state management with libraries such as
Redux and MobX.

The Controversies of Local State Management

State management is a controversial topic. You will find a ton of discussions and opinions around it.
You will find it as recurring topic not only in React, but also in other SPA or view layer solutions for
modern web applications. The book is my attempt to give you consistency for these opinions and
enable you to learn state management step by step.

The following statement is controversial: The local state in React is sufficient for most of your
application. You will not need a sophisticated state management solutions like Redux or MobX.

Personally, I agree with the statement. You can build quite large applications with only local state
management. You should be aware of best practices and patterns to scale it, but it is doable. You can
spare a lot of application complexity by using plain local state. Once your application scales, you
might want to consider using a sophisticated state management library.

The next statement might be controversial, too: Once you have a sophisticated state management
library in place, you shouldn’t use local state anymore.

Personally, I strongly disagree with the statement. Not every state should live in a sophisticated state
management. There are use cases when local state is applicable in large applications. Especially when
considering entity state and view state: The view state can most often live in a local state, because
it is not shared widely across the application. But the entity state can live in a sophisticated state,
because it is shared across multiple components. It might need to be accessible and modifiable by
multiple components across your application.

Last but not least, another controversial statement: You don’t need React’s local state, you can learn
Redux instead altogether with React.

I strongly disagree with the statement, too. If you want to develop applications with React, you
should certainly be aware of local state in React. You should have built applications with it before
you start to learn and apply sophisticated state management solutions. You need to run into local
state management problems before you get the help of sophisticated state management solutions.
You will always need local state management, even for large applications.

These were only three controversial statements. But there are waymore opinions around the topic. In
the end, you should make your own experiences to get to know what makes sense to you. However,
if you are transitioning from plain React to React + Redux or React + Redux, I highly recommend
reading this article before continuing reading the book: Things to learn in React before using Redux37.

37https://www.robinwieruch.de/learn-react-before-using-redux/

https://www.robinwieruch.de/learn-react-before-using-redux/
https://www.robinwieruch.de/learn-react-before-using-redux/

Local State Management 44

The Flaw of Local State Management

In order to come to a conclusion of local state management, there is one open question: What’s
the problem with local state management? Developers wonder why they need sophisticated state
management in order to tame their state. In other scenarios, people never wonder about it, because
they have learned sophisticated state management from the beginning without using local state.
That might not be the best approach in the first place, because you have to experience a problem
before you use a solution for it. You can’t skip the problem and use the solution right away.

So what’s the problemwith using only local state management? It doesn’t scale in large applications.
It doesn’t scale implementation-wise, but it probably doesn’t scale in a team of developers too.

Implementation-wise it doesn’t scale because too many components across your application share
state. They need to access the state, need to modify it or need to remove it. In a small application,
these components are not far away from each other. You can apply best practices like lifting state
up and down to keep the state management maintainable. At some point, components are too far
away from each other. The state needs to be lifted the component tree all the way up. Still, child
components could be multiple levels below the stateful component. The state would creep through
all components in between even though these components don’t need access to it.

Local state can become unmaintainable. It is already difficult for one person to keep the places in
mind where local state is used in the component tree. When a team of developers implements one
application, it becomes even more difficult to keep track of it. Usually it is not necessary to keep
track about the local state. In a perfect world, everyone would lift state up and down to keep it
maintainable. In the real world, code doesn’t get refactored as often as it should be. The state creeps
through all components even though they don’t consume it.

One could argue that the issues of maintainability apply for sophisticated state as well. That’s true,
there are pitfalls again that people need to avoid to keep the state management maintainable. But at
least the state management is gathered at one place to maintain it. It doesn’t get too mixed up with
the view layer. There are only bridges that connect the view with the state. Thus it is a wise decision
to apply sophisticated state management in larger applications in order to tame the state.

Redux
Redux is one of the libraries that helps you implement sophisticated state management in your
applications. It goes beyond the local state. It is one of the solutions you would take in a scaling
application in order to tame the state. A React application is a perfect fit for Redux, yet other libraries
and frameworks highly adopted its concepts as well.

Why is Redux that popular in the JavaScript community? In order to answer that question, I
have to go a bit into the past of JavaScript applications. In the beginning, there was one library to
rule them all: jQuery. It was mainly used to manipulate the DOM, to amaze with animations and to
implement reusable widgets. It was the number one library in JavaScript. There was no way around
it. However, the usage of jQuery skyrocketed and applications grew in size, but not in size of HTML
and CSS. It was the size of code in JavaScript. Eventually, the code in those applications became a
mess, because there was no proper architecture around it. The infamous spaghetti code became a
problem in JavaScript applications.

It was about time for nouveau solutions to emerge which would go beyond jQuery. These libraries,
most of them frameworks, would bring the tools for proper architectures in frontend applications.
In addition, they would bring opinionated approaches to solve problems. These solutions enabled
developers to implement single page applications (SPAs).

Single page applications became popular when the first generation of frameworks and libraries,
among them Angular 1, Ember and Backbone, were released. Suddenly, developers had frameworks
to build scaling frontend applications. However, as history repeats itself, with every new technology
there will be new problems. In SPAs every solution had a different approach for state management.
For instance, Angular 1 used the infamous two-way data binding. It embraced a bidirectional data
flow. Only after applications scaled, the problem in state management became widely known.

During that time React was released by Facebook. It was among the second generation of SPA
solutions. Compared to the first generation, it was a library that only leveraged the view layer. It
came with an own state management solution though: local state management.

In React, the principle of the unidirectional data flow became popular. State management should
be more predictable in order to reason about it. Yet, the local state management wasn’t sufficient
at some point. React applications scaled very well, but ran into the same problems of predictable
and maintainable state management when building larger applications. Even though the problems
weren’t as destructive as in bidirectional data flow applications, there was still a scaling problem.
That was the time when Facebook introduced the Flux architecture.

The Flux architecture is a pattern to deal with state management in scaling applications. The official
website says that “[a] unidirectional data flow is central to the Flux pattern […]”. The data flows
only in one direction. Apart from the unidirectional data flow, the Flux architecture came with 4
essential components: Action, Dispatcher, Store and View. The View is basically the component tree

Redux 46

in a modern application. A user can interact with the View in order to trigger an Action. An Action
would encapsulate all the necessary information to update the state in the Store(s). The Dispatcher
on the way delegates the Actions to the Store(s). The updated state would be propagated to the Views
again to update them.

The data flow goes in one direction. A View can trigger an Action, that goes through the Dispatcher
and Store, and would change the View eventually when the state in the Store changed. The
unidirectional data flow is enclosed in this loop. Then again, a View can trigger another Action.
Since Facebook introduced the Flux architecture, the View was associated with React.

You can read more about the Flux architecture38 on the official website. There you will find a video
about its introduction at a conference39 too. If you are interested about the origins of Redux, I highly
recommend reading and watching the material.

After all, Redux became the successor library of the Flux architecture. Even though there were a
bunch of solutions around the Flux architecture, Reduxmanaged to succeed. But why did it succeed?

Dan Abramov40 and Andrew Clark41 are the creators of Redux. It was introduced by Dan Abramov
at React Europe42 in 2015. However, the talk by Dan doesn’t introduce Redux per se. Instead, the
talk introduced a problem that Dan Abramov faced that led to implementing Redux. I don’t want
to foreclose the content of the talk, that’s why I encourage you to watch the video yourself. If you
are keen to learn Redux, you should dive into the problem that was solved by it.

Nevertheless, one year later, again at React Europe, Dan Abramov reflected on the journey of Redux
and its success. He mentioned a few things that had made Redux successful in his opinion.

Redux was developed to solve a problem. The problem was explained by Dan Abramov one year
earlier when he introduced Redux. It was not yet another library. It was a library that solved a
problem. Time Traveling and Hot Reloading were the stress test for Redux.

The constraints of Redux were another key factor to its success. Redux managed to shield away the
problem with a simple API and a thoughtful way to solve the problem of state management itself.

You can watch the talk43 too. I highly recommend it. Either you watch it right now or after the next
chapter that introduces you to the basics of Redux.

38https://facebook.github.io/flux/
39https://youtu.be/nYkdrAPrdcw?list=PLb0IAmt7-GS188xDYE-u1ShQmFFGbrk0v
40https://twitter.com/dan_abramov
41https://twitter.com/acdlite
42https://www.youtube.com/watch?v=xsSnOQynTHs
43https://www.youtube.com/watch?v=uvAXVMwHJXU

https://facebook.github.io/flux/
https://youtu.be/nYkdrAPrdcw?list=PLb0IAmt7-GS188xDYE-u1ShQmFFGbrk0v
https://youtu.be/nYkdrAPrdcw?list=PLb0IAmt7-GS188xDYE-u1ShQmFFGbrk0v
https://twitter.com/dan_abramov
https://twitter.com/acdlite
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=uvAXVMwHJXU
https://facebook.github.io/flux/
https://youtu.be/nYkdrAPrdcw?list=PLb0IAmt7-GS188xDYE-u1ShQmFFGbrk0v
https://twitter.com/dan_abramov
https://twitter.com/acdlite
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=uvAXVMwHJXU

Redux 47

Basics in Redux

On the official Redux website44 it says: “Redux is a predictable state container for JavaScript apps.”.
It can be used standalone or in connection with with libraries, like React and Angular, to manage
state in JavaScript applications.

Redux adopted a handful of constraints from the Flux architecture but not all of them. It has Actions
that encapsulate information about the state update. It has a Store to save the state, too. However, the
Store is a singleton. Thus, there are not multiple Stores like there used to be in the Flux architecture.
In addition, there is no single Dispatcher. Instead, Redux uses multiple Reducers. Basically, Reducers
pick up the information from Actions and “reduce” it to a new state that is saved in the Store. When
state in the Store is changed, the View can act on this by subscribing to the Store.

Concept Playground

View -> Action -> Reducer(s) -> Store -> View

Why is it called Redux? Because it combines the two words Reducer and Flux. The abstract picture
should be imaginable now. The state doesn’t live in the View anymore, it is only connected to
the View. What does connected mean? It is connected on two ends, because it is part of the
unidirectional data flow. One end is responsible to trigger an Action to update the state, the second
end is responsible to receive the state from the Store. The View can update according to state changes
and can trigger state changes.

The View, in this case, would be React, but Redux could be used with any other library or standalone.
After all, it is only a state management container.

Action(s)

An action in Redux is a JavaScript object. It has a type and an optional payload. The type is often
referred to as action type. While the type is a string literal, the payload can be anything.

In the beginning, your playground to get to know Redux will be a Todo application. For instance,
the following action in this application can be used to add a new todo item:

44http://redux.js.org/

http://redux.js.org/
http://redux.js.org/

Redux 48

Code Playground

{

type: 'TODO_ADD',

todo: { id: '0', name: 'learn redux', completed: false },

}

Executing an action is called to dispatch in Redux. You can dispatch an action to alter the state in
the Redux store. You only dispatch when you want to change the state. The dispatch of an action
can be triggered in your view layer. It could be as simple as a click on a button.

In addition, the payload in a Redux action is not mandatory. You can define actions that have only
an action type. That subject will be revisited later in the book.

So once an action is dispatched, it will come by all reducers in Redux.

Reducer(s)

A reducer is the next part in the chain of the unidirectional data flow. The view dispatches an action
and the action object, with action type and optional payload, will pass through all reducers.

What’s a reducer? A reducer is a pure function. It always produces the same output when the input
stays the same. It has no side-effects, thus it is only an input/output operation.

A reducer has two inputs: state and action. The state is always the whole state object from the Redux
store. The action is the dispatched action with a type and an optional payload. The reducer reduces
- that explains the naming - the previous state and incoming action to a new state.

Code Playground

(state, action) => newState

Apart from the functional programming principle, namely that a reducer is a pure function without
side-effects, it also embraces immutable data structures. It always returns a newState object without
mutating the incoming state object. Thus, the following reducer, where the state of the Todo
application is a list of todos, is not an allowed reducer function:

Code Playground

function(state, action) {

return state.push(action.todo);

}

It would mutate the previous state instead of returning a new state object. The following is allowed
because it keeps the previous state intact:

Redux 49

Code Playground

function reducer(state, action) {

return state.concat(action.todo);

}

By using the JavaScript built-in concat functionality45, the state and thus the list of todos is
concatenated to another item. The other item is the newly added todo from the action. You might
wonder if this embraces immutability now. Yes it does, because concat always returns a new array
without mutating the old array. The data structure stays immutable. You will learn more about how
to keep your data structures immutable later on.

But what about the action type? Right now, only the payload is used to produce a new state but
the action type is ignored.

When an action object arrives at the reducers, the action type can be evaluated. Only when a reducer
cares about the action type, it will produce a new state. Otherwise, it simply returns the previous
state. In JavaScript, a switch case can help to evaluate different action types or to return the previous
state on default.

Imagine your Todo application would have a second action that toggles a Todo to either completed
or incomplete.

Code Playground

{

type: 'TODO_TOGGLE',

todo: { id: '0' },

}

The reducer would have to act on two actions now: TODO_ADD and ‘TODO_TOGGLE’. By using a
switch case statement, you can branch into different cases. If there is not such a case, you return the
unchanged state by default.

45https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/concat

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/concat
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/concat

Redux 50

Code Playground

function reducer(state, action) {

switch(action.type) {

case 'TODO_ADD' : {

// do something and return new state

}

case 'TODO_TOGGLE' : {

// do something and return new state

}

default : return state;

}

}

The book already discussed the TODO_ADD action type and its functionality. It simply concats a new
todo item to the previous list of todo items. But what about the TODO_TOGGLE functionality?

Code Playground

function reducer(state, action) {

switch(action.type) {

case 'TODO_ADD' : {

return state.concat(action.todo);

}

case 'TODO_TOGGLE' : {

return state.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

}

default : return state;

}

}

In the example, the built-in JavaScript functionality map is used to map over the state, the list of
todos, to either return the intact todo or return the toggled todo. The toggled todo is identified by
its id.

The JavaScript built-in functionality map46 always returns a new array. It doesn’t mutate the
previous state and thus the state of todos stays immutable and can be returned as new state.

46https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Redux 51

But isn’t the toggled todo mutated? No, because Object.assign() returns a new object without
mutating the old object. Object.assign()merges all given objects from the former to the latter into
each other. If a former object shares the same property as a latter object, the property of the latter
object will be used. Thus, the completed property of the updated todo item will be the negated state
of the old todo item.

Notice that these functionalities, actions and reducer, are plain JavaScript. There is no function from
the Redux library involved by now. There is no hidden library magic. It is plain JavaScript with
functional programming principles in mind.

One last basic step about the reducer: It has grown in size that makes it less maintainable. In order
to keep reducers tidy, most often the different switch case branches are extracted as pure functions:

Code Playground

function reducer(state, action) {

switch(action.type) {

case 'TODO_ADD' : {

return applyAddTodo(state, action);

}

case 'TODO_TOGGLE' : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

function applyAddTodo(state, action) {

return state.concat(action.todo);

}

function applyToggleTodo(state, action) {

return state.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

}

The Todo application has two actions and one reducer by now. One last part in the Redux setup is
missing: the Store.

Redux 52

Store

So far, the Todo application has a way to trigger state updates (actions) and a way to reduce the
previous state and action to a new state (reducer). But no one is responsible to glue these parts
together.

• Who delegates the actions to the reducer?
• Who triggers actions?
• And finally: Where do I get the updated state to glue it to my View?

It is the Redux store. The store holds one global state object. There are no multiple stores and no
multiple states. The store is only one instance in your application. In addition, it is the first library
dependency you encounter when using Redux.

In JavaScript ES6 you can use the import statement to get the functionality to create the store object.

Code Playground

import { createStore } from 'redux';

Now you can use it to create a store singleton instance. The createStore function takes one
mandatory argument: a reducer. You already defined a reducer in the Reducer chapter which adds
and completes todo items.

Code Playground

const store = createStore(reducer);

In addition, the createStore takes a second optional argument: the initial state. In the case of the
Todo application, the reducer operated on a list of todos as state. The list of todo items should be
initialized as an empty array or pre-filled array with todos. If it wasn’t initialized, the reducer would
fail because it would operate on undefined property.

Code Playground

const store = createStore(reducer, []);

In another chapter, the book will showcase another way to initialize state. Therefore, you would use
the reducer instead of the store.

Now you have a store instance that knows about the reducer. The Redux setup is done. However,
now you want to interact with the store. You want to dispatch actions, get the state from the store
and listen to updates of the state in the store. So how to dispatch an action?

Redux 53

Code Playground

store.dispatch({

type: 'TODO_ADD',

todo: { id: '0', name: 'learn redux', completed: false },

});

How to get the global state from the store?

Code Playground

store.getState();

How to subscribe (and unsubscribe) to the store in order to listen for updates?

Code Playground

const unsubscribe = store.subscribe(() => {

console.log(store.getState());

});

// don't forget to unsubscribe eventually

unsubscribe();

That’s it. The Redux store has only a slim API to access the state, update it and listen for updates.

Hands On: Redux Standalone

You know about all the basics in Redux now. A view dispatches an action on the store, the action
passes all reducers and gets reduced by reducers that care about it. The store saves the new state
object. Finally, a listener updates the view with the new state.

Concept Playground

View -> Action -> Reducer(s) -> Store -> View

Let’s apply these learnings. You can either use your own project where you have JavaScript,
JavaScript ES6 features enabled and Redux at your disposal. Or you can open up the following
JS Bin: Redux Playground47.

Let’s apply the learnings about actions, reducers, and the store from the last chapter together. First,
you can define your reducer that deals with adding and toggling todo items:

47https://jsbin.com/zukogaj/2/edit?html,js,console

https://jsbin.com/zukogaj/2/edit?html,js,console
https://jsbin.com/zukogaj/2/edit?html,js,console

Redux 54

Code Playground

function reducer(state, action) {

switch(action.type) {

case 'TODO_ADD' : {

return applyAddTodo(state, action);

}

case 'TODO_TOGGLE' : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

function applyAddTodo(state, action) {

return state.concat(action.todo);

}

function applyToggleTodo(state, action) {

return state.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

}

Second, you can initialize the Redux store that uses the reducer and an initial state. In the JS Bin
you have Redux available as global variable.

Code Playground

const store = Redux.createStore(reducer, []);

If you are in your own project, you might be able to import the createStore:

Code Playground

import { createStore } from 'redux';

const store = createStore(reducer, []);

Third, you can dispatch your first action on the store.

Redux 55

Code Playground

store.dispatch({

type: 'TODO_ADD',

todo: { id: '0', name: 'learn redux', completed: false },

});

That’s it. You have set up all parts of Redux and interacted with it by using an action. You can
retrieve the state by getting it from the store.

Code Playground

console.log(store.getState());

But rather than outputting it manually, you can subscribe a callback function to the store to output
the latest state. Make sure to subscribe to the store before dispatching your actions in order to get
the output.

Code Playground

const unsubscribe = store.subscribe(() => {

console.log(store.getState());

});

Now, whenever you dispatch an action, after the state was updated, the store subscription should
become active. Don’t forget to unsubscribe eventually.

Code Playground

unsubscribe();

A finished application can be found in this JS Bin48.

Before you continue to read, you should experiment with the project. What you see in the project
is plain JavaScript ES6 with a Redux store. You can come up with more actions and deal with them
in your reducer. The application should make you aware that Redux is only a state container. The
state can be altered by using actions. The reducer takes care of the action. It uses the action and the
old state to create a new state in the Redux store.

Later you will learn about how to to connect the Redux store to your React view layer. But before
doing so, let’s dive into actions and reducers a bit deeper.

48https://jsbin.com/kopohur/28/edit?html,js,console

https://jsbin.com/kopohur/28/edit?html,js,console
https://jsbin.com/kopohur/28/edit?html,js,console

Redux 56

Advanced Actions

You have learned about actions in a previous chapter. However, there are more fine grained details
that I want to cover in this chapter. The same applies for reducers. Both will be covered in the
following chapters.

Therefore, it would be a requirement that you feel confident with the learnings from the previous
chapter. Not all of the following learnings are mandatory to write applications in Redux, but they
teach best practices and common usage patterns. In an advanced application, you would want to
know about these topics.

Minimum Action Payload

Do you recall the action from a previous chapter that added a todo item? It was something like the
following:

Code Playground

{

type: 'TODO_ADD',

todo: { id: '0', name: 'learn redux', completed: false },

}

As you can see, the completed property is defined as false. In addition, you saw that the action and
reducer from the previous chapter did work under these circumstances. However, a rule of thumb
in Redux is to keep the action payload to a minimum.

In the example, when you want to add a todo in a Todo application, it would need at least the
unique identifier and a name of a todo. But the completed property is unnecessary. The assumption
is that every todo that is added to the store will be incomplete. It wouldn’t make sense in a puristic
Todo application to add completed todos, would it? Therefore, not the action would take care of the
property but the reducer.

Instead of simply passing the whole todo object into the list of todos in your reducer:

Code Playground

function applyAddTodo(state, action) {

return state.concat(action.todo);

}

You can add the completed property as hardcoded property:

Redux 57

Code Playground

function applyAddTodo(state, action) {

const todo = Object.assign({}, action.todo, { completed: false });

return state.concat(todo);

}

Finally, you can omit it in the action:

Code Playground

{

type: 'TODO_ADD',

todo: { id: '0', name: 'learn redux' },

}

Now, you only defined the necessary payload in the action. Nevertheless, if at some point the Todo
application decides to add uncompleted todos in the first place, you can add it in the action again
and leave it out in the reducer. Ultimately, keeping the payload in the action to a minimum is a best
practice in Redux.

Action Type

Actions get evaluated in reducers by action type. The action type is the glue between both parts even
though actions and reducers can be defined independently. To make the application more robust,
you should extract the action type as a variable. Otherwise, you can run into typos where an action
never reaches a reducer because you misspelled it.

Code Playground

const TODO_ADD = 'TODO_ADD';

const TODO_TOGGLE = 'TODO_TOGGLE';

const action = {

type: TODO_ADD,

todo: { id: '0', name: 'learn redux' },

};

const toggleTodoAction = {

type: TODO_TOGGLE,

todo: { id: '0' },

};

Redux 58

function reducer(state, action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

There is another benefit in extracting the action type as variable. Because action, reducer and action
type are loosely coupled, you can define them in separate files. You would only need to import the
action type to use them only in specific actions and reducers. After all, action types could be used
in multiple reducers. This use case will be covered in another chapter when it comes to advanced
reducers.

Action Creator

Action creators add another layer on top, which often leads to confusion when learning Redux.
Action creators are not mandatory, but they are convenient to use.

So far, you have dispatched an action as plain action object:

Code Playground

const TODO_ADD = 'TODO_ADD';

store.dispatch({

type: TODO_ADD,

todo: { id: '0', name: 'learn redux' },

});

Action creators encapsulate the action with its action type and optional payload in a reusable
function. In addition, they give you the flexibility to pass any payload. After all, they are only
pure functions which return an object.

Redux 59

Code Playground

function doAddTodo(id, name) {

return {

type: TODO_ADD,

todo: { id, name },

};

}

Now, you can use it by invoking the function in your dispatch method:

Code Playground

store.dispatch(doAddTodo('0', 'learn redux'));

Action creators return a plain action. Once again, it is not mandatory to use them, but it adds
convenience and makes your code more readable in the long run. In addition, you can test action
creators independently as functions. Last but not least, these action creators stay reusable because
they are functions.

Optional Payload

In the book, it was mentioned earlier that actions don’t need to have a payload. Only the action type
is required.

For instance, imagine you want to login into your Todo application. Therefore, you need to open up
a modal where you can enter your credentials: email and password. You wouldn’t need a payload
for your action in order to open a modal. You only need to signalize that the modal state should be
stored as open by dispatching an action.

Code Playground

{

type: 'LOGIN_MODAL_OPEN',

}

A reducer would take care of it and set the state of a isLoginModalOpen property to true. While it
is good to know that the payload is not mandatory in actions, the last example can lead to a bad
practice. Because you already know that you would need a second action to close the modal again.

Redux 60

Code Playground

{

type: 'LOGIN_MODAL_CLOSE',

}

A reducer would set the isLoginModalOpen property in the state to false. That’s verbose, because
you already need two actions to alter only one property in the state.

By planning your actions thoughtfully, you avoid these bad practices and keep your actions on
a higher level of abstraction. If you used the optional payload for the action, you could solve
login scenario in only one action instead of two actions. The isLoginModalOpen property would
be dynamically passed in the action rather than being hardcoded in a reducer.

Code Playground

{

type: 'LOGIN_MODAL_TOGGLE',

isLoginModalOpen: true,

}

By using an action creator, the payload can be passed in as arguments and thus stays flexible.

Code Playground

function doToggleLoginModal(open) {

return {

type: 'LOGIN_MODAL_TOGGLE',

isLoginModalOpen: open,

};

}

In Redux, actions should always try to stay on an abstract level rather than on a concrete level.
Otherwise, you will end up with duplications and verbose actions. However, don’t worry too much
about it for now. This will be explained in more detail in another chapter in this book that is about
commands and events.

Payload Structure

Again you will encounter a best practice that is not mandatory in Redux. So far, the payload was
dumped without much thought in the actions. Now imagine an action that has a larger payload than
a simple todo. For instance, the action payload should clarify to whom the todo is assigned.

Redux 61

Code Playground

{

type: 'TODO_ADD_ASSIGNED',

todo: { id: '0', name: 'learn redux' },

assignedTo: { id: '99' name: 'Robin' },

}

The properties would add up horizontally, but mask the one most important property: the type.
Therefore, you should treat action type and payload on the same level, but nest the payload itself
one level deeper as the two abstract properties.

Code Playground

{

type: 'TODO_ADD_ASSIGNED',

payload: {

todo: { id: '0', name: 'learn redux' },

assignedTo: { id: '99' name: 'Robin' },

},

}

The refactoring ensures that type and payload are visible on first glance. As said, it is not mandatory
to do so and often adds more complexity. But in larger applications it can keep your action creators
readable.

Hands On: Redux Standalone with advanced Actions

Let’s dip into the Redux Playground again with the acquired knowledge about actions. You can take
the JS Bin project that you have done in the last chapter49 again. The project will be used to show the
advanced actions. You can try it on your own. Otherwise, the following part will guide you through
the refactorings.

The minimum action payload is a quick refactoring. You can omit the completed in the action and
add it to the reducer functionality.

49https://jsbin.com/kopohur/28/edit?html,js,console

https://jsbin.com/kopohur/28/edit?html,js,console
https://jsbin.com/kopohur/28/edit?html,js,console

Redux 62

Code Playground

function applyAddTodo(state, action) {

const todo = Object.assign({}, action.todo, { completed: false });

return state.concat(todo);

}

...

store.dispatch({

type: 'TODO_ADD',

todo: { id: '0', name: 'learn redux' },

});

store.dispatch({

type: 'TODO_ADD',

todo: { id: '1', name: 'learn mobx' },

});

The next step is the extraction of the action type from the actions and reducer. It should be defined
as a variable and can be replaced in the reducer.

Code Playground

const TODO_ADD = 'TODO_ADD';

const TODO_TOGGLE = 'TODO_TOGGLE';

function reducer(state, action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

In addition, you can use the variable in the dispatched actions.

Redux 63

Code Playground

store.dispatch({

type: TODO_ADD,

todo: { id: '0', name: 'learn redux' },

});

store.dispatch({

type: 'TODO_ADD',

todo: { id: '1', name: 'learn mobx' },

});

store.dispatch({

type: TODO_TOGGLE,

todo: { id: '0' },

});

In the next step, you can introduce action creators to your Todo application. First, you can define
them:

Code Playground

function doAddTodo(id, name) {

return {

type: TODO_ADD,

todo: { id, name },

};

}

function doToggleTodo(id) {

return {

type: TODO_TOGGLE,

todo: { id },

};

}

Second, you can use them in your dispatch invocations:

Redux 64

Code Playground

store.dispatch(doAddTodo('0', 'learn redux'));

store.dispatch(doAddTodo('1', 'learn mobx'));

store.dispatch(doToggleTodo('0'));

There were two more advanced topics about actions in this chapter: optional payload and payload
structure. The first topic wouldn’t apply in the current application. Every action has to have a
payload. The second topic could be applied. However, the payload is small and thus doesn’t need to
be deeply restructured with a payload property.

The final Todo application can be found in this JS Bin50. You can do further experiments with it
before you continue with the next chapter.

50https://jsbin.com/kopohur/29/edit?html,js,console

https://jsbin.com/kopohur/29/edit?html,js,console
https://jsbin.com/kopohur/29/edit?html,js,console

Redux 65

Advanced Reducers

Apart from the advanced topics about actions, there is more to know about reducers, too. Again, not
everything is mandatory, but you should at least know about the following things to embrace best
practices, common usage patterns and practices on scaling your state architecture.

Initial State

So far, you have provided your store with an initial state. It was an empty list of todos.

Code Playground

const store = createStore(reducer, []);

That’s the initial state for the whole Redux store. However, you can apply the initial state on a more
fine-grained level. Before you dispatch your first action, the Redux store will initialize by running
through all reducers once. You can try it by removing all of your dispatches in the editor and add a
console.log() in the reducer. You will see that it runs with an initializing action once, even though
there is no dispatched action.

The initializing action, that is received in the reducer, is accompanied by the initial state that is
specified in the createStore() function. However, if you leave out the initial state in the store
initialization, the incoming state in the reducer will be undefined.

Code Playground

const store = createStore(reducer);

That’s where you can opt-in to specify initial state on a fine-grained level. If the incoming state is
undefined, you can default with a JavaScript ES6 default parameter51 to a default initial state.

Code Playground

function reducer(state = [], action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

51https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters

Redux 66

The initial state will be the same as before, but you defined it on a more fine-grained level. Later
on, that will help you when you specify more than one reducer and your state object becomes more
complex.

Nested Data Structures

The initial state is an empty list of todos. However, in a growing application you want to operate
on more than todos. You might have a currentUser object that represents the logged in user in
your application. In addition, you want to have a filter property to filter todos by their completed
property. In a growing application, more objects and arrays will gather in the global state. That’s
why your initial state shouldn’t be an empty list but an object that represents the state object. This
object then has nested properties for todos, currentUser and filter.

Disregarding the initial state in the reducer from the last chapter, you would define your initial state
in the store like in the following:

Code Playground

const initialState = {

todos: [],

};

const store = createStore(reducer, initialState);

Now you can use the space horizontally in your initialState object. It might grow to the following
at some point:

Code Playground

const initialState = {

currentUser: null,

todos: [],

filter: 'SHOW_ALL',

};

If you get back to your Todo application, you will have to adjust your reducer. The reducer deals
with a todos list as state, but now it is a complex global state object.

Redux 67

Code Playground

function reducer(state, action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

function applyAddTodo(state, action) {

const todo = Object.assign({}, action.todo, { completed: false });

const todos = state.todos.concat(todo);

return Object.assign({}, state, { todos });

}

function applyToggleTodo(state, action) {

const todos = state.todos.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

return Object.assign({}, state, { todos });

}

Those nested data structures are fine in Redux, but you want to avoid deeply nested data
structures. As you can see, it adds complexity to create your new state object. Another chapter
later on in the book will pick up this topic. It will showcase how you can avoid deeply nested data
structures by using a neat helper library with the name normalizr.

Combined Reducer

The next chapter is crucial to understand the principles of scaling state by using substates in Redux.

You heard about multiple reducers, but haven’t used them yet. A reducer can grow horizontally by
using action types, but it doesn’t scale at some point. You want to split it up into two reducers or
introduce another reducer right from the beginning. Imagine you had a reducer that served your
todos, but you want to have a reducer for the filter state for your todos eventually. Another use
case could be to have a reducer for the currentUser that is logged in into your Todo application.

Redux 68

You can already see a pattern on how to separate your reducers. It is usually by domain like todos,
filter, or user. A todo reducer might be responsible to add, remove, edit and complete todos. A
filter reducer is responsible to manage the filter state. A user reducer cares about user entities that
could be the currentUser who is logged in in your application or a list of users who are assigned
to todos. That’s where you could again split up the user reducer to a currentUser reducer and
a assignedUsers reducer. You can imagine how this approach, introducing reducers by domain,
scales very well.

Let’s enter combined reducers to enable you using multiple reducers. Redux gives you a helper to
combine multiple reducers into one root reducer: combineReducers(). The function takes an object
as input that has a state as property name and a reducer as value.

Code Playground

const rootReducer = combineReducers({

todoState: todoReducer,

filterState: filterReducer,

});

Afterward, the rootReducer can be used to initialize the Redux store instead of the single todo
reducer.

Code Playground

const store = createStore(rootReducer);

That’s it for the initialization of the Redux store with combined reducers. But what about the
reducers themselves? There is already one reducer that cares about the todos.

Code Playground

function todoReducer(state, action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

The filterReducer is not there yet. It would look something like the following:

Redux 69

Code Playground

function filterReducer(state, action) {

switch(action.type) {

case FILTER_SET : {

return applySetFilter(state, action);

}

default : return state;

}

}

Now, there comes the important clue. The combineReducers() function introduces an intermediate
state layer for the global state object. The global state object, when using the combined reducers as
shown before, would look like the following:

Code Playground

{

todoState: ...,

filterState: ...,

}

The property keys for the intermediate layer are those defined in the combineReducers() function.
However, in your reducers the incoming state is not the global state object anymore. It is their
defined substate from the combinedReducers() function. The todoReducer doesn’t know anything
about the filterState and the filterReducer doesn’t know anything about the todoState.

The filterReducer and todoReducer can use the JavaScript ES6 default parameter to define their
initial state.

Code Playground

function todoReducer(state = [], action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

Redux 70

function filterReducer(state = 'SHOW_ALL', action) {

switch(action.type) {

case FILTER_SET : {

return applySetFilter(state, action);

}

default : return state;

}

}

Now your apply function in the reducers have to operate on these substates again.

Code Playground

function applyAddTodo(state, action) {

const todo = Object.assign({}, action.todo, { completed: false });

return state.concat(todo);

}

function applyToggleTodo(state, action) {

return state.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

}

function applySetFilter(state, action) {

return action.filter;

}

This chapter seems like a lot of hassle. But it is crucial knowledge to split up your global state into
substates. These substates can be managed by their reducers who only operate on these substates.
In addition, each reducer can be responsible to define the initial substate.

Clarification for Initial State

The last chapters moved around the initial state initialization from createStore() to the reducer(s)
a few times. You might wonder where to initialize your state after all.

Therefore, you have to distinguish whether you are using combined reducers or only one plain
reducer.

Redux 71

One plain reducer:When using only one plain reducer, the initial state in createStore() dominates
the initial state in the reducer. The initial state in the reducer only works when the incoming initial
state is undefined because then it can apply a default state. But the initial state is already defined
in createStore() and thus utilized by the reducer.

Combined reducers: When using combined reducers, you can embrace a more nuanced usage of
the state initialization. The initial state object that is used for the createStore() function doesn’t
have to include all substates that are introduced by the combineReducers() function. Thus, when a
substate is undefined, the reducer can define the default substate. Otherwise, the default substate
from the createStore() is used.

Nested Reducers

By now, you know two things about scaling reducers in a growing application that demand
sophisticated state management:

• a reducer can care about different action types
• a reducer can be split up into multiple reducers yet be combined as one root reducer for the
store initialization

These steps are used to scale the reducers horizontally (even though combined reducers add at least
one vertical level). A reducer operates on the global state or on a substate when using combined
reducers. However, you can use nested reducers to introduce vertically clearer levels of substate.

Take for example the todoReducer that operates on a list of todos. From a technical perspective, a list
of todos has todo entities. So why not introduce a nested reducer that deals with the todo substate
as entities?

Code Playground

function todoReducer(state = [], action) {

switch(action.type) {

case TODO_ADD : {

return [...state, todoEntityReducer(undefined, action)];

}

case TODO_TOGGLE : {

return state.map(todo => todoEntityReducer(todo, action));

}

default : return state;

}

}

function todoEntityReducer(state, action) {

Redux 72

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

function applyAddTodo(state, action) {

return Object.assign({}, action.todo, { completed: false });

}

function applyToggleTodo(todo, action) {

return todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

}

You can use nested reducers to introduce clearer boundaries in substates. In addition, they can be
reused. You might run into cases where you can reuse a nested reducer somewhere else.

While nested reducers can give you a better picture on your state, they can add more levels of
complexity for your state, too. You should follow the practice of not nesting your state too deeply
in the first place. Then you won’t run into nested reducers often.

Hands On: Redux Standalone with advanced Reducers

Let’s dip into the Redux Playground again with the acquired knowledge about reducers. Again, you
can take the JS Bin project that you have done in the last chapter52. The project will be used to show
the advanced reducers. You can try it on your own. Otherwise, the following part will guide you
through the refactorings.

First, let’s add the second reducer to filter the todos.

52https://jsbin.com/kopohur/29/edit?html,js,console

https://jsbin.com/kopohur/29/edit?html,js,console
https://jsbin.com/kopohur/29/edit?html,js,console

Redux 73

Code Playground

const FILTER_SET = 'FILTER_SET';

function filterReducer(state = 'SHOW_ALL', action) {

switch(action.type) {

case FILTER_SET : {

return applySetFilter(state, action);

}

default : return state;

}

}

function applySetFilter(state, action) {

return action.filter;

}

The reducer has an initial state. There is no action yet that serves the reducer though. You can add
a simple action creator that only gets a string as filter. You will experience later on, how this can be
used in a real application.

Code Playground

function doSetFilter(filter) {

return {

type: FILTER_SET,

filter,

};

}

Second, you can rename your first reducer to todoReducer and give it an initial state of an empty
list of todos.

Code Playground

function todoReducer(state = [], action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

Redux 74

default : return state;

}

}

The initial state isn’t initialized in the createStore() function. It is initialized on amore fine-grained
level in the reducers. When you recap the last lessons learned from the advanced reducers chapter,
you will notice that you spared the back and forth with the initial state. Now, the todoReducer still
operates on the todos substate and the new filterReducer operates on the filter substate. As third
and last step you you have to combine both reducers to get this intermediate layer of substates.

In the JS Bin you have Redux available as global variable to get the combineReducer function.
Otherwise, you could import it with JavaScript ES6.

Code Playground

const rootReducer = Redux.combineReducers({

todoState: todoReducer,

filterState: filterReducer,

});

Now you can use the rootReducer in the store initialization.

Code Playground

const store = createStore(rootReducer);

When you run your application again, everything should work. You can now use the filterReducer
as well.

Code Playground

store.dispatch(doAddTodo('0', 'learn redux'));

store.dispatch(doAddTodo('1', 'learn mobx'));

store.dispatch(doToggleTodo('0'));

store.dispatch(doSetFilter('COMPLETED'));

The Todo application favors initial state in reducers over initial state in createStore(). In addition,
it will not use a nested todoEntityReducer for the sake of keeping the reducer hierarchy simple for
now. The nested data structures are achieved implicitly by using combined reducers.

The final Todo application can be found in this JS Bin53. You can do further experiments with it
before continuing with the next chapter.

53https://jsbin.com/kopohur/30/edit?html,js,console

https://jsbin.com/kopohur/30/edit?html,js,console
https://jsbin.com/kopohur/30/edit?html,js,console

Redux in React
In the last chapters, you got to know plain Redux. It helps you to manage a predictable state object.
However, you want to use this state object in an application eventually. It can be any JavaScript
application that has to deal with state management. The principle of Redux could be deployed to
any programming language to manage a state object.

State management in single page applications (SPAs) is one of these use cases where Redux can
be applied. These applications are usually built with a framework (Angular) or view layer library
(React, Vue), but most often these solutions lack of a sophisticated state management solution. That’s
where Redux comes into play. The book focuses on React, but you can apply the learnings to other
solutions, such as Angular and Vue, too.

The following scenarios could live without Redux in the first place, because they wouldn’t run
into state management issues with using only local state. But for the sake of demonstrating Redux
in React, they will omit local state management and apply sophisticated state management with
Redux.

Redux in React 76

Connecting the State

On the one hand you have React as your view layer. It has everything you need to build a component
hierarchy. You can compose components into each other. In addition, the component’s methodsmake
sure that you always have a hook into their lifecycle.

On the other hand you have Redux. By now, you should know how to manage state in Redux.
First, you initialize everything by setting up reducer(s) and optional action creators. After that the
(combined) reducer is used to create the Redux store. Second, you can interact with the store by
dispatching actions, by subscribing to the store and by getting the current state from the store.

These three interactions need to be accessed from your view layer. As mentioned, the view layer
can be anything, but to keep it focused it will be React in this book.

If you recall the unidirectional data flow in Redux, that was adapted from the Flux architecture, you
will notice that you have all parts at your disposal by now.

Concept Playground

View -> Action -> Reducer(s) -> Store -> View

How can dispatch(), subscribe() and getState() be accessed in a React view layer? Basically,
the view layer has to be able to dispatch actions on the one end, while it has to listen to updates
from the store, in order to update itself, on the other end. All three functionalities are accessible as
methods on the Redux store.

Hands On: Bootstrap React App with Redux

It is highly recommended to use create-react-app to bootstrap your React application. However, it is
up to you to follow that advice. If you use create-react-app and have never used it before, you have
to install it first from the command line:

Command Line

npm install -g create-react-app

Now you can bootstrap your React application with create-react-app, navigate into the folder, and
start it:

Redux in React 77

Command Line

create-react-app taming-the-state-todo-app

cd taming-the-state-todo-app

npm start

If you haven’t used create-react-app before, I recommend you to read up the basics in the official
documentation54. Basically, your src/ folder has several files. You will not use the src/App.js file in
this application, but only the src/index.js file. Open up your editor and adjust your src/index.js file
to the following:

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

function TodoApp() {

return <div>Todo App</div>;

}

ReactDOM.render(<TodoApp />, document.getElementById('root'));

Now, when you start your application again with npm start, you should see the displayed “Todo
App” string from the TodoAddcomponent. Before you continue to build a React application now, let’s
hook in all of the Redux code that you have written in the previous chapters. First, install Redux in
your application.

Command Line: /

npm install --save redux

Second, re-use the Redux code from the previous chapters in your src/index.js file. You start at the top
to import the two Redux functionalities that you have used so far. They belong next to the imports
that are already there:

54https://github.com/facebookincubator/create-react-app

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

Redux in React 78

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { combineReducers, createStore } from 'redux';

import './index.css';

Now, in between of your imports and your React code, you introduce your Redux functionalities.
First, the action types:

src/index.js

// action types

const TODO_ADD = 'TODO_ADD';

const TODO_TOGGLE = 'TODO_TOGGLE';

const FILTER_SET = 'FILTER_SET';

Second, the reducers with an initial state:

src/index.js

// reducers

const todos = [

{ id: '0', name: 'learn redux' },

{ id: '1', name: 'learn mobx' },

];

function todoReducer(state = todos, action) {

switch(action.type) {

case TODO_ADD : {

return applyAddTodo(state, action);

}

case TODO_TOGGLE : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

function applyAddTodo(state, action) {

const todo = Object.assign({}, action.todo, { completed: false });

Redux in React 79

return state.concat(todo);

}

function applyToggleTodo(state, action) {

return state.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

}

function filterReducer(state = 'SHOW_ALL', action) {

switch(action.type) {

case FILTER_SET : {

return applySetFilter(state, action);

}

default : return state;

}

}

function applySetFilter(state, action) {

return action.filter;

}

Third, the action creators:

src/index.js

// action creators

function doAddTodo(id, name) {

return {

type: TODO_ADD,

todo: { id, name },

};

}

function doToggleTodo(id) {

return {

type: TODO_TOGGLE,

todo: { id },

};

}

Redux in React 80

function doSetFilter(filter) {

return {

type: FILTER_SET,

filter,

};

}

And last but not least, the creation of the store with the combined reducers:

src/index.js

// store

const rootReducer = combineReducers({

todoState: todoReducer,

filterState: filterReducer,

});

const store = createStore(rootReducer);

After that, your React code follows. It should already be there in the same file.

src/index.js

// view layer

function TodoApp() {

return <div>Todo App</div>;

}

ReactDOM.render(<TodoApp />, document.getElementById('root'));

The bootstrapping is done. The bootstrapped application can be found in a GitHub repository55. Now
you have a running React application and a Redux store. But they don’t work together yet. The next
step is to wire both together.

55https://github.com/rwieruch/taming-the-state-todo-app/tree/0.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/0.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/0.0.0

Redux in React 81

Hands On: Naive Todo with React and Redux

The following will showcase a naive usage scenario of Redux in React. So far, you only have a
TodoApp component in React. However, you want to start a component tree that can display a list
of todos and gives the user the possibility to toggle these todos to a completed status. Apart from
the TodoApp component, you will have a TodoList component and a TodoItem component. The
TodoItem shows the name of the todo and has a functionality that is used in a button to complete
the todo.

First, the TodoApp component:

src/index.js

function TodoApp({ todos, onToggleTodo }) {

return <TodoList

todos={todos}

onToggleTodo={onToggleTodo}

/>;

}

Second, the TodoList component:

src/index.js

function TodoList({ todos, onToggleTodo }) {

return (

<div>

{todos.map(todo => <TodoItem

key={todo.id}

todo={todo}

onToggleTodo={onToggleTodo}

/>)}

</div>

);

}

Third, the TodoItem component:

Redux in React 82

src/index.js

function TodoItem({ todo, onToggleTodo }) {

const { name, id, completed } = todo;

return (

<div>

{name}

<button

type="button"

onClick={() => onToggleTodo(id)}

>

{completed ? "Incomplete" : "Complete"}

</button>

</div>

);

}

Notice that none of these components is aware of Redux. They simply display todos and use a
callback function to toggle todo items. Now, in the last step, you wire together Redux and React.
You can use the initialized store in your root component where React hooks into HTML.

src/index.js

ReactDOM.render(

<TodoApp

todos={store.getState().todoState}

onToggleTodo={id => store.dispatch(doToggleTodo(id))}

/>,

document.getElementById('root')

);

The store does two things: it makes state accessible and exposes functionalities to alter the state.
The todos props are passed down to the TodoApp by retrieving them from the store. In addition, a
onToggleTodo property is passed down which is a function. This function is a higher order function
that wraps the dispatching of an action that is created by its action creator. However, the TodoApp
component is completely unaware of the todos being retrieved from the Redux store or of the
onToggleTodo() being a dispatched action on the Redux store. These passed properties are simple
props for the TodoApp. You can start your application again with npm start. The todos should be
displayed but not updated yet.

What about the update mechanism? When an action is dispatched, someone needs to subscribe to
the Redux store. In a naive approach, you can do the following to force a view update. First, wrap
your React root into a function.

Redux in React 83

src/index.js

function render() {

ReactDOM.render(

<TodoApp

todos={store.getState().todoState}

onToggleTodo={id => store.dispatch(doToggleTodo(id))}

/>,

document.getElementById('root')

);

}

Second, you can pass the function to the subscribe() method of the Redux store. And last but not
least, you have to invoke the function one time for the initial render of your component tree.

src/index.js

function render() {

ReactDOM.render(

<TodoApp

todos={store.getState().todoState}

onToggleTodo={id => store.dispatch(doToggleTodo(id))}

/>,

document.getElementById('root')

);

}

store.subscribe(render);

render();

The Todo application should display the todos and update the completed state once you toggle it.
The final application of this approach can be found in a GitHub repository56.

The approach showcased how you can wire up your React component tree with the Redux store. The
components don’t need to be aware of the Redux store at all, but the root component is. In addition,
everything is re-rendered when the global state in the Redux store updates.

Even though the previous approach is pragmatic and shows a simplified version of how to wire
up all these things, it is naive. Why is that? In a real application you want to avoid the following
practices:

56https://github.com/rwieruch/taming-the-state-todo-app/tree/1.0.1

https://github.com/rwieruch/taming-the-state-todo-app/tree/1.0.1
https://github.com/rwieruch/taming-the-state-todo-app/tree/1.0.1

Redux in React 84

• re-render the whole component tree: You want to re-render only the components that are
affected by the global state updated. Otherwise, you will run into performance issues in a
scaling application.

• using the store instance: You want to avoid to operate directly on the Redux store instance.
The store should be injected somehow into your component tree to make it accessible for
components that need to have access to the store.

• making the store globally available: The store shouldn’t be globally accessible by every
component. In the previous example only the React root component uses it, but who prevents
you from using it directly in your TodoItem component to dispatch an action?

Fortunately, there exists a library that takes care of these things and gives you a bridge from the
Redux to the React world.

Redux in React 85

Connecting the State, but Sophisticated

A library called react-redux57 gives you two things in order to wire up Redux with React.

First, it gives you a <Provider /> component. When using Redux with React, the Provider

component should be the root component of your application. The component gets one property
as input: the Redux store that you created once with createStore().

Code Playground

import { Provider } from 'react-redux'

ReactDOM.render(

<Provider store={store}>

<App />

</Provider>,

document.getElementById('root')

);

After you have done this, every child component in the whole component tree has an implicit access
to the store. Thus, every component is able to dispatch actions and to listen to updates in order to
re-render. But not every component has to listen to updates. How does this work without passing
the store as props to each child component? It uses the provider pattern that you got to know in a
previous chapter. Under the hood it uses the React context API:

“In some cases, you want to pass data through the component tree without having to pass the props
down manually at every level. You can do this directly in React with the powerful “context” API.”

That was part one to use Redux in React. Second, you can use a higher component that is called
connect from the react-redux library. It makes the Redux store functionality dispatch and the state
from the store itself available to the enhanced component.

Code Playground

import { connect } from 'react-redux'

function Component(props) {

...

}

const ConnectedComponent = connect(...)(Component);

The connect HOC can have up to four arguments as configuration:

57https://github.com/reactjs/react-redux

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux

Redux in React 86

Code Playground

connect([mapStateToProps], [mapDispatchToProps], [mergeProps], [options])(...);

Usually, you will only use two of them: mapStateToProps() and mapDispatchToProps(). You will
learn about the other two arguments, mergeProps() and options, later in this book.

mapStateToProps(state, [props]) ⇒ derivedProps: It is a function that can be passed to the
connect HOC. If it is passed, the input component of the connect HOC will subscribe to updates
from the Redux store. Thus, it means that every time the store subscription notices an update, the
mapStateToProps() function will run. The mapStateToProps() function itself has two arguments in
its function signature: the global state object and optionally the props from the parent component.
The function returns an object that is derived from the global state and optionally from the props
from the parent component. The returned object will be merged into the remaining props that come
as input in the connected component when it is used.

mapDispatchToProps(dispatch, [props]): It is a function (or object) that can be passed to the
connect HOC. Whereas mapStateToProps() gives access to the global state, mapDispatchToProps()
gives access to the dispatch method of the store. It makes it possible to dispatch actions but passes
down only plain functions that wire up the dispatching in a higher order function. After all, it
makes it possible to pass functions down to the input component of the connect HOC to alter the
state. Optionally, you can use the incoming props to wrap those into the dispatched action.

That is a lot of knowledge to digest. Both functions, mapStateToProps() and mapDispatchToProps(),
can be intimidating at the beginning. In addition, they are used in a foreign higher order component.
However, they only give you access to the state and to the dispatch method of the store.

Concept Playground

View -> (mapDispatchToProps) -> Action -> Reducer(s) -> Store -> (mapStateToProp\

s) -> View

You will see in the following examples that these functions don’t need to be intimidating at all.

Hands On: Sophisticated Todo with React and Redux

Now you will use react-redux to wire up React with Redux. Let’s open up your Todo Application in
the editor again. First, you have to install the new library:

Command Line: /

npm install --save react-redux

Second, instead of wrapping the React root component into the render() function and subscribing
it to the store.subscribe()method, you will use the plain React root component again but use the
Provider component given by react-redux.

Redux in React 87

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { combineReducers, createStore } from 'redux';

import { Provider } from 'react-redux';

import './index.css';

...

ReactDOM.render(

<Provider store={store}>

<TodoApp />

</Provider>,

document.getElementById('root')

);

It uses the plain TodoApp component. The component still expects todos and onToggleTodo as props.
But it doesn’t have these props. Let’s use the connect higher order component to expose these to
the TodoApp component. The TodoApp component will become a connected TodoApp component.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { combineReducers, createStore } from 'redux';

import { Provider, connect } from 'react-redux';

import './index.css';

...

const ConnectedTodoApp = connect(mapStateToProps, mapDispatchToProps)(TodoApp);

ReactDOM.render(

<Provider store={store}>

<ConnectedTodoApp />

</Provider>,

document.getElementById('root')

);

Now, only the connections, mapStateToProps() and mapDispatchToProps() are missing. They are
quite similar to the naive React with Redux version.

Redux in React 88

src/index.js

function mapStateToProps(state) {

return {

todos: state.todoState,

};

}

function mapDispatchToProps(dispatch) {

return {

onToggleTodo: id => dispatch(doToggleTodo(id)),

};

}

const ConnectedTodoApp = connect(mapStateToProps, mapDispatchToProps)(TodoApp);

...

That’s it. In mapStateToProps() only a substate is returned. In mapDispatchToProps() only a higher
order function that encapsulates the dispatching of an action is returned. The child components are
unaware of any state or actions. They are only receiving props. The final application of this approach
can be found in a GitHub repository58. I would advice you to compare it to the naive version again
that wires React and Redux together. It is not that different from it.

Hands On: Connecting State Everywhere

There is one last clue to understand the basics of wiring React and Redux together. In the previous
example, you only used one connected component that is located at the root of your component
tree. But you can use connected components everywhere.

Only your TodoApp component has access to the state and enables you to alter the state. Instead
of using your root component to connect to it to the store, you can add connected components in
between. For instance, the onToggleTodo() function has to pass several components until it reaches
its destination in the TodoItem component. Why not connecting the TodoItem component to make
the functionality right next to it available rather than passing it down to multiple components? The
same applies for the TodoList component. It could be connected to retrieve the list of todos instead
of getting it from the TodoApp component.

In the Todo application, you could keep both mapStateToProps() and mapDispatchToProps(), but
you would use them somewhere else. While the TodoApp component doesn’t need them anymore,
they would be used in a connected TodoItem and connected TodoList component.

58https://github.com/rwieruch/taming-the-state-todo-app/tree/2.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/2.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/2.0.0

Redux in React 89

src/index.js

const ConnectedTodoList = connect(mapStateToProps)(TodoList);

const ConnectedTodoItem = connect(null, mapDispatchToProps)(TodoItem);

ReactDOM.render(

<Provider store={store}>

<TodoApp />

</Provider>,

document.getElementById('root')

);

Now you wouldn’t need to pass the onToggleTodo() props through the TodoApp component and
TodoList component anymore. The same applies for the todos that don’t need to get passed through
the TodoApp component.

src/index.js

function TodoApp() {

return <ConnectedTodoList />;

}

function TodoList({ todos }) {

return (

<div>

{todos.map(todo => <ConnectedTodoItem

key={todo.id}

todo={todo}

/>)}

</div>

);

}

The final Todo application can be found in the GitHub repository59.

As you can imagine by now, you can connect your state everywhere to your view layer. You can
retrieve it with mapStateToProps() and alter it with mapDispatchToProps() from everywhere in
your component tree. These components that add this intermediate glue between view and state are
called connected components. They are a subset of the container components from the container
and presenter pattern. The presenter components are still clueless and don’t know if the props are
derived from a Redux store, from local state or actions. They just use these props.

After all, that’s basically everything you need to connect your state layer (Redux) to a view layer
(React). As mentioned, your view layer could be exchanged with another library such as Vue.

59https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0

Redux State Structure and Retrieval
You have learned about Redux standalone and Redux in React. You would already be able to build
applications with it. Before you dive deeper into Redux, I recommend you to experiment with your
recent learnings and apply them in smaller applications.

The following chapter guides you through more advanced topics in Redux to manage your state. You
will get to know the middleware in Redux, you will learn more about a normalized state structure,
an immutable state structure and how to retrieve a substate in an improved way from the global
state with selectors.

Redux State Structure and Retrieval 91

Middleware in Redux

In Redux, you can use a middleware. Every dispatched action in Redux flows through this
middleware. You can opt-in a specific feature in between dispatching an action and the moment
it reaches the reducer.

There are useful libraries out there to opt-in feature into your Redux middleware. In the following,
you will get to know one of them: redux-logger60. When you use it, it doesn’t change anything in
your application in production. But it will make your life easier as developer when dealing with
Redux in development. What does it do? It simply logs the actions in your developer console with
console.log(). As a developer, it gives you clarity on which action is dispatched and how the
previous and the new state are structured.

But where to apply the middleware? The stores can be initialized with a middleware. The
createStore() functionality from Redux takes as third argument an enhancer. The redux library
comes with one of these enhancers: applyMiddleware().

Code Playground

import { applyMiddleware, createStore } from 'redux';

const store = createStore(

reducer,

undefined,

applyMiddleware(...)

);

Now, when using redux-logger, you can pass a logger instance to the applyMiddleware() function.

Code Playground

import { applyMiddleware, createStore } from 'redux';

import { createLogger } from 'redux-logger';

const logger = createLogger();

const store = createStore(

reducer,

undefined,

applyMiddleware(logger)

);

60https://github.com/evgenyrodionov/redux-logger

https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger

Redux State Structure and Retrieval 92

That’s it. Now every action should be visible in your developer console when dispatching them. You
don’t have to take care of this anymore. Your state changes become more predictable as developer.

The applyMiddleware() functionality takes any number ofmiddleware: applyMiddleware(firstMiddleware,
secondMiddleware, ...);. The action will flow through all middleware before it reaches the
reducers. Sometimes, you have to make sure to apply them in the correct order. For instance, the
redux-loggermiddlewaremust be last in themiddleware chain in order to output the correct actions
and states.

Nevertheless, that’s only the redux-logger middleware. On your way to implement Redux appli-
cations, you will surely find out more about useful features that can be used with a middleware.
Most of these features are already taken care of in libraries that you will find published on npm.
For instance, asynchronous actions in Redux are possible by using the Redux middleware. These
asynchronous actions will be explained later in this book.

Redux State Structure and Retrieval 93

Immutable State

Redux embraces an immutable state. Your reducers will always return a new state object. You will
never mutate the incoming state. Therefore, you might have to get used to different JavaScript
functionalities and syntax to embrace immutable data structures.

So far, you have used built-in JavaScript functionalities to keep your data structures immutable.
Such as array.map() and array.concat(item) for arrays or Object.assign() for objects. All of
these functionalities return new instances of arrays or objects. Often, you have to read the official
JavaScript documentation to make sure that they return a new instance of the array or object.
Otherwise, you would violate the constraints of Redux because you would mutate the previous
instance.

But it doesn’t end here. You should know about your tools to keep data structures immutable
in JavaScript. There are a handful of third-party libraries that can support you in keeping them
immutable.

• immutable.js61

• mori.js62

• seamless-immutable.js63

• baobab.js64

But they come with three drawbacks. First, they add another layer of complexity to your application.
Second, you have to learn yet another library. And third, you have to dehydrate and rehydrate your
data, because most of these libraries wrap your vanilla JavaScript objects and arrays into a library
specific immutable data object and array. It is an immutable data object/array in your Redux store,
but once you want to use it in React you have to transform it into a plain JavaScript object/array.

Personally I would recommend to use such libraries only in two scenarios:

• You are not comfortable to keep your data structures immutable with JavaScript ES5,
JavaScript ES6 and beyond.

• Youwant to improve the performance of immutable data structures when using huge amounts
of data.

If both statements are false, I would advice you to stick to plain JavaScript. As you have seen, the
built-in JavaScript functionalities already help a lot. In JavaScript ES6 and beyond you get one more
functionality to keep your data structures immutable: spread operators65. Spreading an object or
array into a new object or new array always gives you a new object or new array.

Do you recall how you added a new todo item or how you completed a todo item in your reducers?
61https://github.com/facebook/immutable-js
62https://github.com/swannodette/mori
63https://github.com/rtfeldman/seamless-immutable
64https://github.com/Yomguithereal/baobab
65https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

https://github.com/facebook/immutable-js
https://github.com/swannodette/mori
https://github.com/rtfeldman/seamless-immutable
https://github.com/Yomguithereal/baobab
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://github.com/facebook/immutable-js
https://github.com/swannodette/mori
https://github.com/rtfeldman/seamless-immutable
https://github.com/Yomguithereal/baobab
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

Redux State Structure and Retrieval 94

Code Playground

// adding todo

const todo = Object.assign({}, action.todo, { completed: false });

const newTodos = todos.concat(todo);

// toggling todo

const newTodos = todos.map(todo =>

todo.id === action.todo.id

? Object.assign({}, todo, { completed: !todo.completed })

: todo

);

If you added more JavaScript ES6, you could keep it even more concise.

Code Playground

// adding todo

const todo = { ...action.todo, completed: false };

const newTodos = [...todos, todo];

// toggling todo

const newTodos = todos.map(todo =>

todo.id === action.todo.id

? { ...todo, completed: !todo.completed }

: todo

);

JavaScript gives you enough tools to keep your data structures immutable. There is no need to use
a third-party library except for the two mentioned use cases. However, there might be a third use
case where such library would help: deeply nested data structures in Redux that need to be kept
immutable. It is true that it becomes more difficult to keep data structures immutable when they are
deeply nested. But, as mentioned earlier in the book, it is bad practice to have deeply nested data
structures in Redux in the first place. That’s where the next chapter of the book comes into play that
can be used to keep your data structures flat.

Redux State Structure and Retrieval 95

Normalized State

A best practice in Redux is a flat state structure. You don’t want to maintain an immutable state
when it is deeply nested. It becomes tedious and unreadable even with spread operators. But often
you don’t have control over your data structure, because it comes from a backend application via
its API. When having a deeply nested data structure, you have two options:

• saving it in the store as it is and postpone the problem
• saving it as normalized data structure in the store

You should prefer the second option. You only deal with the problem once and all subsequent parts in
your application will be grateful for it. Let’s run through one scenario to illustrate the normalization
of data. Imagine you have a deeply nested data structure:

Code Playground

const todos = [

{

id: '0',

name: 'create redux',

completed: true,

assignedTo: {

id: '99',

name: 'Dan Abramov',

},

},

{

id: '1',

name: 'create mobx',

completed: true,

assignedTo: {

id: '77',

name: 'Michel Weststrate',

},

}

];

Both library creators, Dan Abramov and Michel Weststrate, did a great job: they created popular
libraries for state management. The first option, as mentioned, would be to save the todos as they
are in the store. The todos themselves would have the deeply nested information of the assigned
user. Now, if an action wanted to correct an assigned user, the reducer would have to deal with the
deeply nested data structure. Let’s add Andrew Clark to the creators of Redux.

Redux State Structure and Retrieval 96

Code Playground

const ASSIGNED_TO_CHANGE = 'ASSIGNED_TO_CHANGE';

store.dispatch({

type: ASSIGNED_TO_CHANGE,

payload: {

todoId: '0',

name: 'Dan Abramov and Andrew Clark',

},

});

function todoReducer(state = [], action) {

switch(action.type) {

case ASSIGNED_TO_CHANGE : {

return applyChangeAssignedTo(state, action);

}

...

default : return state;

}

}

function applyChangeAssignedTo(state, action) {

return state.map(todo => {

if (todo.id === action.payload.todoId) {

const assignedTo = { ...todo.assignedTo, name: action.payload.name };

return { ...todo, assignedTo };

} else {

return todo;

}

});

}

The further you have to reach into a deeply nested data structure, the more you have to be careful
to keep your data structure immutable. Each level of nested data adds more tedious work of
maintaining it. Therefore, you should use a library called normalizr66. The library uses schema
definitions to transform deeply nested data structures into dictionaries that have entities and a
corresponding list of ids.

66https://github.com/paularmstrong/normalizr

https://github.com/paularmstrong/normalizr
https://github.com/paularmstrong/normalizr

Redux State Structure and Retrieval 97

What would that look like? Let’s take the previous list of todo items as example. First, you would
have to define schemas for your entities only once:

Code Playground

import { schema } from 'normalizr';

const assignedToSchema = new schema.Entity('assignedTo');

const todoSchema = new schema.Entity('todo', {

assignedTo: assignedToSchema,

});

Second, you can normalize your data whenever you want:

Code Playground

import { schema, normalize } from 'normalizr';

const assignedToSchema = new schema.Entity('assignedTo');

const todoSchema = new schema.Entity('todo', {

assignedTo: assignedToSchema,

});

const normalizedData = normalize(todos, [todoSchema]);

The output would be the following:

Code Playground

{

entities: {

assignedTo: {

77: {

id: "77",

name: "Michel Weststrate"

},

99: {

id: "99",

name: "Dan Abramov"

}

},

Redux State Structure and Retrieval 98

todo: {

0: {

assignedTo: "99",

completed: true,

id: "0",

name: "create redux"

},

1: {

assignedTo: "77",

completed: true,

id: "1",

name: "create mobx"

}

}

},

result: ["0", "1"]

}

The deeply nested data became a flat data structure grouped by entities. Each entity can reference
another entity by its id. Now you could have one reducer that stores and deals with the assignedTo
entities and one reducer that deals with the todoentities. The data structure is flat and grouped by
entities and thus easier to access and to manipulate. The basic approach would be to normalize data
structure first before you send it as a payload in a action to their reducers.

There is another benefit in normalizing your data. When your data is denormalized, entities are
often duplicated in your nested data structure. Imagine the following object with todos.

Code Playground

const todos = [

{

id: '0',

name: 'write a book',

completed: true,

assignedTo: {

id: '55',

name: 'Robin Wieruch',

},

},

{

id: '1',

name: 'self-publish a book',

completed: true,

Redux State Structure and Retrieval 99

assignedTo: {

id: '55',

name: 'Robin Wieruch',

},

}

];

If you store such denormalized data in your Redux store, you will likely run into an issue. What’s
the problem with the denormalized data structure? Imagine you want to update the name property
Robin Wieruch of all assignedTo properties. You would have to run through all todos in order to
update all assignedTo properties with the id 55. The problem: There is no single source of truth.
You will likely forget to update an entity and run into a stale state eventually. Therefore, the best
practice is to store your state normalized so that each entity can be a single source of truth. There
will be no duplication of entities and thus no stale state when updating the single source of truth.
Each todo will reference to the updated assignedTo entity:

Code Playground

{

entities: {

assignedTo: {

55: {

id: "55",

name: "Robin Wieruch"

}

},

todo: {

0: {

assignedTo: "55",

completed: true,

id: "0",

name: "write a book"

},

1: {

assignedTo: "55",

completed: true,

id: "1",

name: "call it taming the state"

}

}

},

result: ["0", "1"]

}

Redux State Structure and Retrieval 100

In conclusion, normalizing your state has two benefits. It keeps your state flat and thus easier
manageable with immutable data structures. In addition, it groups entities to single sources of truth
without any duplications. When you normalize your state, you will automatically get groupings of
entities that could lead to their own reducers managing them.

There exists yet another benefit when normalizing your state. It is about denormalization: how do
component retrieve the normalized state? You will learn it in the next chapter.

Redux State Structure and Retrieval 101

Selectors

In Redux, there is the concept of selectors to retrieve derived properties from your state. A selector
is a function that takes the state as argument and returns a substate or derived properties of it. It can
be that they only return a substate of your global state or that they already preprocess your state to
return derived properties. The function can take optional arguments to support the selection of the
derived properties.

Plain Selectors

Selectors usually follow the same syntax. The mandatory argument of a selector is the state from
where it has to select from. There can be optional arguments that are in a supportive role to select
the substate or the derived properties.

Code Playground

(state) => derived properties

(state, arg) => derived properties

Selectors are not mandatory. When thinking about all the parts in Redux, only the action(s), the
reducer(s) and the Redux store are a binding requirement. Similar to action creators, selectors can
be used to achieve an improved developer experience in a Redux architecture. What does a selector
look like? It is a plain function, as mentioned, that could live anywhere. However, you would use it,
when using Redux in React, in your mapStateToProps() function.

Instead of retrieving the state explicitly:

Code Playground

function mapStateToProps(state) {

return {

todos: state.todoState,

};

}

You would retrieve it implicitly via a selector:

Redux State Structure and Retrieval 102

Code Playground

function getTodos(state) {

return state.todoState;

}

function mapStateToProps(state) {

return {

todos: getTodos(state),

};

}

It is similar to the action and reducer concept. Instead of manipulating the state directly in the Redux
store, you will use action(s) and reducer(s) to alter it indirectly. The same applies for selectors that
don’t retrieve the derived properties directly but indirectly from the global state.

Why is that an advantage? There are several benefits. A selector can be reused. You will run into
cases where you select the derived properties more often. That’s always a good sign to use a function
in the first place. In addition, selectors can be tested separately. They are pure functions and thus
an easily testable part in the architecture. Last but not least, deriving properties from state can
become a complex undertaking in a scaling application. As mentioned, a selector could get optional
arguments to derive more sophisticated properties from the state. The selector function itself would
become more complex, but it would be encapsulated in one function rather than, for instance in
React and Redux, in a mapStateToProps() function.

Denormalize State in Selectors

In the last chapter that was about normalizing your state, there was one benefit left unexplained. It
is about selecting normalized state. Personally, I would argue a normalized state structure makes it
much more convenient to select a substate from it. When you recall the normalized state structure,
it looked something like the following:

Code Playground

{

entities: ...

ids: ...

}

For instance, in a real work application it would look like the following:

Redux State Structure and Retrieval 103

Code Playground

// state

[

{ id: '0', name: 'learn redux' },

{ id: '1', name: 'learn mobx' },

]

// normalized state

{

entities: {

0: {

id: '0',

name: 'learn redux',

},

1: {

id: '1',

name: 'learn redux',

},

},

ids: ['0', '1'],

}

If you recall the Redux in React chapter, there you passed the list of todos from the TodoList

component, because it is a connected component, down to the whole component tree. How would
you solve this with the normalized state from above?

Assuming that the reducer stored the state in a normalized immutable data structure, you would
only pass the list of todo ids to your TodoList component. Because this component manages the
list and not the entities themselves, it makes perfect sense that it only gets the list with references
to the entities.

Code Playground

function TodoList({ todosAsIds }) {

return (

<div>

{todosAsIds.map(todoId => <ConnectedTodoItem

key={todoId}

todoId={todoId}

/>)}

</div>

);

Redux State Structure and Retrieval 104

}

function getTodosAsIds(state) {

return state.todoState.ids;

}

function mapStateToProps(state) {

return {

todosAsIds: getTodosAsIds(state),

};

}

const ConnectedTodoList = connect(mapStateToProps)(TodoList);

Now the ConnectedTodoItem component, that already passes the onToggleTodo() handler via the
mapDispatchToProps() function to its plain TodoItem component, would select the todo entity
matching to the incoming todoId property.

Code Playground

function getTodoAsEntity(state, id) {

return state.todoState.entities[id];

}

function mapStateToProps(state, props) {

return {

todo: getTodoAsEntity(state, props.todoId),

};

}

function mapDispatchToProps(dispatch) {

return {

onToggleTodo: id => dispatch(doToggleTodo(id)),

};

}

const ConnectedTodoItem = connect(mapStateToProps, mapDispatchToProps)(TodoItem);

The TodoItem component itself would stay the same. It still gets the todo item and the onTog-

gleTodo() handler as arguments. In addition, you can see two more concepts that were explained
earlier. First, the selector grows in complexity because it gets optional arguments to select derived
properties from the state. Second, the mapStateToProps() function makes use of the incoming props
from the TodoList component that uses the ConnectedTodoItem component.

Redux State Structure and Retrieval 105

As you can see, the normalized state requires to use more connected components. More components
are responsible to select their needed derived properties. But in a growing application, following this
pattern can make it easier to reason about it. You only pass properties that are really necessary to
the component. In the last case, the TodoList component only cares about a list of references yet
the TodoItem component itself cares about the entity that is selected by using the reference passed
down by the TodoList component.

There exists another way to denormalize your normalized state when using normalizr. The previous
scenario allowed you to only pass the minimum of properties to the components. Each component
was responsible to select its state. In this scenario, you will denormalize your state in one component
while the other components don’t need to care about it. You will use the defined schema again to
reverse the normalization.

Code Playground

import { denormalize, schema } from 'normalizr';

const todoSchema = new schema.Entity('todos');

const todosSchema = { todos: [todoSchema] };

function TodoList({ todos }) {

return (

<div>

{todos.map(todo => <ConnectedTodoItem

key={todo.id}

todo={todo}

/>)}

</div>

);

}

function getTodos(state) {

const entities = state.todoState.entities;

const ids = state.todoState.ids;

return denormalize(ids, [todoSchema], entities);

}

function mapStateToProps(state) {

return {

todos: getTodos(state),

};

}

const ConnectedTodoList = connect(mapStateToProps)(TodoList);

Redux State Structure and Retrieval 106

In this scenario, the whole normalized data structure gets denormalized in the selector. You will
have the whole list of todos in your TodoList component. The TodoItem component wouldn’t need
to take care about the denormalization.

Reselect

When using selectors in a scaling application, you should consider a library called reselect67 that
provides you with advanced selectors. Basically, it uses the same concept of plain selectors as you
have learned before. But it comes with two improvements.

A plain selector has one constraint:

• “Selectors can compute derived data, allowing Redux to store the minimal possible state.”

There are two more constraints when using selectors from the reselect library:

• “Selectors are efficient. A selector is not recomputed unless one of its arguments change.”
• “Selectors are composable. They can be used as input to other selectors.”

Selectors are pure functions without any side-effects. The output doesn’t change when the input
stays the same. Therefore, when a function is called twice and its arguments didn’t change, it returns
the same output. This proposition is used in reselect’s selectors. It is called memoization. A selector
doesn’t need to compute everything again when its input didn’t change. It will simply return the
same output. In a scaling application this can have a performance impacts.

Another benefit, when using reselect, is the ability to compose selectors. It supports the case of
implementing reusable selectors that only solve one problem. Afterward they can be composed in a
functional programming style.

The book will not dive deeper into reselect. When learning Redux it is good to know about these
advanced selectors, but you are fine by using plain selectors in the beginning. If you cannot stay put,
you can read up the example usages in the official GitHub repository68 and apply in your projects
while reading the book.

67https://github.com/reactjs/reselect
68https://github.com/reactjs/reselect

https://github.com/reactjs/reselect
https://github.com/reactjs/reselect
https://github.com/reactjs/reselect
https://github.com/reactjs/reselect

Redux State Structure and Retrieval 107

Hands On: Todo with Advanced Redux

In the Todo application, you could refactor everything to use the advanced techniques you have
learned in the previous chapters: a middleware, an immutable data structure using spread operators,
a normalized data structure and selectors. Let’s continue with the Todo application that you
have build when you connected React and Redux. The last version can be found in the GitHub
repository69.

In the first part, let’s use the redux-logger70 middleware. You have to install it on the command line:

Command Line: /

npm install --save redux-logger

Next you can use it when you create your store:

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { applyMiddleware, combineReducers, createStore } from 'redux';

import { Provider, connect } from 'react-redux';

import { createLogger } from 'redux-logger';

import './index.css';

...

// store

const rootReducer = combineReducers({

todoState: todoReducer,

filterState: filterReducer,

});

const logger = createLogger();

const store = createStore(

rootReducer,

undefined,

applyMiddleware(logger)

);

69https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0
70https://github.com/evgenyrodionov/redux-logger

https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0
https://github.com/evgenyrodionov/redux-logger
https://github.com/rwieruch/taming-the-state-todo-app/tree/3.0.0
https://github.com/evgenyrodionov/redux-logger

Redux State Structure and Retrieval 108

When you start your Todo application now, you should see the output of the logger in the developer
console. The Todo application with the middleware using redux-logger can be found in the GitHub
repository71.

The second part is to use spread operators instead of the Object.assign() function to keep an
immutable data structure. You can apply it in your reducer functions:

src/index.js

function applyAddTodo(state, action) {

const todo = { ...action.todo, completed: false };

return [...state, todo];

}

function applyToggleTodo(state, action) {

return state.map(todo =>

todo.id === action.todo.id

? { ...todo, completed: !todo.completed }

: todo

);

}

The application should work the same as before. The source code can be found in the GitHub
repository72.

In the third part of the refactoring, you will use a normalized state structure. Therefore, you can
install the neat library normalizr73.

Command Line: /

npm install --save normalizr

Let’s have a look at the initial state for the todoReducer. You could make up your own initial state.
For instance, what about completing all coding examples in this book?

71https://github.com/rwieruch/taming-the-state-todo-app/tree/4.0.0
72https://github.com/rwieruch/taming-the-state-todo-app/tree/5.0.0
73https://github.com/paularmstrong/normalizr

https://github.com/rwieruch/taming-the-state-todo-app/tree/4.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/4.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/5.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/5.0.0
https://github.com/paularmstrong/normalizr
https://github.com/rwieruch/taming-the-state-todo-app/tree/4.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/5.0.0
https://github.com/paularmstrong/normalizr

Redux State Structure and Retrieval 109

src/index.js

const todos = [

{ id: '1', name: 'Hands On: Redux Standalone with advanced Actions' },

{ id: '2', name: 'Hands On: Redux Standalone with advanced Reducers' },

{ id: '3', name: 'Hands On: Bootstrap App with Redux' },

{ id: '4', name: 'Hands On: Naive Todo with React and Redux' },

{ id: '5', name: 'Hands On: Sophisticated Todo with React and Redux' },

{ id: '6', name: 'Hands On: Connecting State Everywhere' },

{ id: '7', name: 'Hands On: Todo with advanced Redux' },

{ id: '8', name: 'Hands On: Todo but more Features' },

{ id: '9', name: 'Hands On: Todo with Notifications' },

{ id: '10', name: 'Hands On: Hacker News with Redux' },

];

function todoReducer(state = todos, action) {

...

}

You can use normalizr to normalize this data structure. First, you have to define a schema:

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { applyMiddleware, combineReducers, createStore } from 'redux';

import { Provider, connect } from 'react-redux';

import { createLogger } from 'redux-logger';

import { schema, normalize } from 'normalizr';

import './index.css';

// schemas

const todoSchema = new schema.Entity('todo');

Second, you can use the schema to normalize your initial todos and use them as default parameter
in your todoReducer.

Redux State Structure and Retrieval 110

src/index.js

// reducers

const todos = [

...

];

const normalizedTodos = normalize(todos, [todoSchema]);

const initialTodoState = {

entities: normalizedTodos.entities.todo,

ids: normalizedTodos.result,

};

function todoReducer(state = initialTodoState, action) {

...

}

Third, your todoReducer needs to handle the normalized state structure. It has to deal with entities
and a result (list of ids). You can output the normalized todos even though the Todo application
crashes when you attempt to start it.

src/index.js

const normalizedTodos = normalize(todos, [todoSchema]);

console.log(normalizedTodos);

The adjusted reducer would have the following internal functions:

src/index.js

function applyAddTodo(state, action) {

const todo = { ...action.todo, completed: false };

const entities = { ...state.entities, [todo.id]: todo };

const ids = [...state.ids, action.todo.id];

return { ...state, entities, ids };

}

function applyToggleTodo(state, action) {

const id = action.todo.id;

const todo = state.entities[id];

const toggledTodo = { ...todo, completed: !todo.completed };

const entities = { ...state.entities, [id]: toggledTodo };

Redux State Structure and Retrieval 111

return { ...state, entities };

}

It operates on entities and ids. Last but not least, when connecting Redux with React, the
components need to be aware of the normalized data structure. First, the connection between store
and components:

src/index.js

function mapStateToPropsList(state) {

return {

todosAsIds: state.todoState.ids,

};

}

function mapStateToPropsItem(state, props) {

return {

todo: state.todoState.entities[props.todoId],

};

}

function mapDispatchToPropsItem(dispatch) {

return {

onToggleTodo: id => dispatch(doToggleTodo(id)),

};

}

const ConnectedTodoList = connect(mapStateToPropsList)(TodoList);

const ConnectedTodoItem = connect(mapStateToPropsItem, mapDispatchToPropsItem)(T\

odoItem);

Second, the TodoList component receives only the todosAsIds and the TodoItem receives the todo
entity.

Redux State Structure and Retrieval 112

src/index.js

function TodoApp() {

return <ConnectedTodoList />;

}

function TodoList({ todosAsIds }) {

return (

<div>

{todosAsIds.map(todoId => <ConnectedTodoItem

key={todoId}

todoId={todoId}

/>)}

</div>

);

}

function TodoItem({ todo, onToggleTodo }) {

...

}

The application should work again. Start it and play around with it. You can find the source code in
the GitHub repository74.

In the fourth and last part of the refactoring you are going to use selectors. This refactoring is fairly
straight forward. You have to extract the parts that operate on the state in your mapStateToProps()
functions to selector functions. First, define the selector functions:

src/index.js

// selectors

function getTodosAsIds(state) {

return state.todoState.ids;

}

function getTodo(state, todoId) {

return state.todoState.entities[todoId];

}

Second, you can use these functions instead of operating on the state directly in your mapStateTo-
Props() functions:

74https://github.com/rwieruch/taming-the-state-todo-app/tree/6.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/6.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/6.0.0

Redux State Structure and Retrieval 113

src/index.js

// Connecting React and Redux

function mapStateToPropsList(state) {

return {

todosAsIds: getTodosAsIds(state),

};

}

function mapStateToPropsItem(state, props) {

return {

todo: getTodo(state, props.todoId),

};

}

The Todo application should work with selectors now. You can find it in the GitHub repository75.

75https://github.com/rwieruch/taming-the-state-todo-app/tree/7.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/7.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/7.0.0

Redux State Structure and Retrieval 114

Hands On: Todo but more Features

In the Todo application, there are two pieces missing feature-wise: the ability to add a todo and to
filter todos by their complete state. Let’s begin with the creation of a todo item. First, there needs to
be a component where you can type in a todo name and execute the creation.

src/index.js

class TodoCreate extends React.Component {

constructor(props) {

super(props);

this.state = {

value: '',

};

this.onCreateTodo = this.onCreateTodo.bind(this);

this.onChangeName = this.onChangeName.bind(this);

}

onChangeName(event) {

this.setState({ value: event.target.value });

}

onCreateTodo(event) {

this.props.onAddTodo(this.state.value);

this.setState({ value: '' });

event.preventDefault();

}

render() {

return (

<div>

<form onSubmit={this.onCreateTodo}>

<input

type="text"

placeholder="Add Todo..."

value={this.state.value}

onChange={this.onChangeName}

/>

<button type="submit">Add</button>

</form>

</div>

Redux State Structure and Retrieval 115

);

}

}

Notice again that the component is completely unaware of Redux. It only updates its local value
state. When the form gets submitted, it uses the internal value state for the onAddTodo() callback
function that’s accessible in the props object. The component doesn’t know whether the callback
function updates the local state of a parent component or the Redux store. Next, you can use the
connected version of this component in the TodoApp component.

src/index.js

function TodoApp() {

return (

<div>

<ConnectedTodoCreate />

<ConnectedTodoList />

</div>

);

}

The last step is to wire the React component to the Redux store by making it a connected component.

src/index.js

function mapDispatchToPropsCreate(dispatch) {

return {

onAddTodo: name => dispatch(doAddTodo(uuid(), name)),

};

}

const ConnectedTodoCreate = connect(null, mapDispatchToPropsCreate)(TodoCreate);

It uses the mapDispatchToPropsCreate() function to get access to the dispatch method of the Redux
store. The doAddTodo() action creator takes the name of the todo item, coming from the TodoCreate
component, and generates a unique identifier with the uuid() function. The uuid() function is a
neat little helper function that comes from the uuid76 library. You have to install it and import it to
your Todo application:

76https://github.com/kelektiv/node-uuid

https://github.com/kelektiv/node-uuid
https://github.com/kelektiv/node-uuid

Redux State Structure and Retrieval 116

Command Line: /

npm install --save uuid

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { applyMiddleware, combineReducers, createStore } from 'redux';

import { Provider, connect } from 'react-redux';

import { createLogger } from 'redux-logger';

import { schema, normalize } from 'normalizr';

import uuid from 'uuid/v4';

import './index.css';

You can try to create a todo item in your Todo application now. It should work. Next you want to
make use of your filter functionality to filter by completeness status of a todo item. First, you have
to add a Filter component.

src/index.js

function Filter({ onSetFilter }) {

return (

<div>

Show

<button

type="button"

onClick={() => onSetFilter('SHOW_ALL')}>

All</button>

<button

type="button"

onClick={() => onSetFilter('SHOW_COMPLETED')}>

Completed</button>

<button

type="button"

onClick={() => onSetFilter('SHOW_INCOMPLETED')}>

Incompleted</button>

</div>

);

}

The Filter component only receives a callback function. Again it doesn’t know anything about the
state management that is happening above. The callback function is used in different buttons to set
specific filter types. You can use the connected component in the TodoApp component again.

Redux State Structure and Retrieval 117

src/index.js

function TodoApp() {

return (

<div>

<ConnectedFilter />

<ConnectedTodoCreate />

<ConnectedTodoList />

</div>

);

}

Last but not least, you have to connect the Filter component to actually use it in the TodoApp

component. It dispatched the doSetFilter action creator by passing the filter type from the
underlying buttons in the Filter component.

src/index.js

function mapDispatchToPropsFilter(dispatch) {

return {

onSetFilter: filterType => dispatch(doSetFilter(filterType)),

};

}

const ConnectedFilter = connect(null, mapDispatchToPropsFilter)(Filter);

When you start your Todo application now, you will see that the filterState will change once
you click on one of your filter buttons. But nothing happens to your displayed todos. They are not
filtered, because in your selector you select the whole list of todos. The next step would be to adjust
the selector to only select the todos in the list that are matching the filter. First, you can define filter
functions that match todos according to their completed state.

src/index.js

// filters

const VISIBILITY_FILTERS = {

SHOW_COMPLETED: item => item.completed,

SHOW_INCOMPLETED: item => !item.completed,

SHOW_ALL: item => true,

};

Second, can use your selector to only select the todos matching a filter. You already have all selectors
in place. But you need to adjust one to filter the todos according to the filterState.

Redux State Structure and Retrieval 118

src/index.js

// selectors

function getTodosAsIds(state) {

return state.todoState.ids

.map(id => state.todoState.entities[id])

.filter(VISIBILITY_FILTERS[state.filterState])

.map(todo => todo.id);

}

function getTodo(state, todoId) {

return state.todoState.entities[todoId];

}

Since your state is normalized, your have to map through all your ids to get a list of todos, filter
them by filterState, and map them back to ‘ids’. Your filter functionality should work now. Start
your application and try it.

You can find the final application in the GitHub repository77. It applies all the learnings about the
Redux middleware, immutable and normalized data structures and selectors.

77https://github.com/rwieruch/taming-the-state-todo-app/tree/8.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/8.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/8.0.0

Asynchronous Redux
In the book, you have only used synchronous actions so far. There is no delay of the action
dispatching involved. Yet, sometimes you want to delay an action. The example can be a simple one:
Imagine you want to have a notification for your application user when a todo item was created.
The notification should hide after one second. The first action would show the notification and set
a isShowingNotification property to true. If the isShowing status of the notification resides in the
store, you would need a way to delay a second action to hide the notification again. In a simple
scenario it would look like the following:

Code Playground

store.dispatch({ type: 'NOTIFICATION_SHOW', text: 'Todo created.' });

setTimeout(() => {

store.dispatch({ type: 'NOTIFICATION_HIDE' })

}, 1000);

There is nothing against a simple setTimeout() function in your application. It can be used in the
context of Redux and React. Sometimes it is easier to remember the basics in JavaScript than trying
to apply yet another library to fix a problem. Since you know about actions creators, the next step
could be to extract these actions into according action creators and action types.

Code Playground

const NOTIFICATION_SHOW = 'NOTIFICATION_SHOW';

const NOTIFICATION_HIDE = 'NOTIFICATION_HIDE';

function doShowNotification(text) {

return {

type: NOTIFICATION_SHOW,

text,

};

}

function doHideNotification() {

return {

type: NOTIFICATION_HIDE,

};

}

Asynchronous Redux 120

store.dispatch(doShowNotification('Todo created.'));

setTimeout(() => {

store.dispatch(doHideNotification());

}, 1000);

There are two problems in a growing application now. First, you would have to duplicate the logic
of the delayed action every time. Second, once your application dispatches multiple notifications at
various places at the same time, the first running action that hides the notifications would hide all
of them. The solution would be to give each notification an identifier. Both problems can be solved
by extracting the functionality into a function.

Code Playground

// actions

const NOTIFICATION_SHOW = 'NOTIFICATION_SHOW';

const NOTIFICATION_HIDE = 'NOTIFICATION_HIDE';

function doShowNotification(text, id) {

return {

type: NOTIFICATION_SHOW,

text,

id,

};

}

function doHideNotification(id) {

return {

type: NOTIFICATION_HIDE,

id,

};

}

// extracted functionality

let naiveId = 0;

function showNotificationWithDelay(dispatch, text) {

dispatch(doShowNotification(text, naiveId));

setTimeout(() => {

dispatch(doHideNotification(naiveId));

}, 1000);

naiveId++;

}

Asynchronous Redux 121

// usage

showNotificationWithDelay(store.dispatch, 'Todo created.');

Now each notification could be identified in the reducer and thus be either shown or hidden. The
extracted function gets control over the dispatch() method from the Redux store, because it needs
to dispatch a delayed action.

Why not passing the Redux store instead? Usually, you want to avoid to pass the store around
directly. You have encountered the same reasoning in the book when weaving the Redux store for
the first time into your React application. You want to make the functionalities of the store available,
but not the entire store itself. That’s why you only have the dispatch() method and not the entire
store in your mapDispatchToProps() function when using react-redux. A connected component
does never have access to the store directly and thus no other functionalities should have direct
access to it.

The pattern from above suffices for simple Redux applications that need a delayed action. However,
in scaling applications it has a drawback. The approach creates two types of action creators. While
there are synchronous action creators that can be dispatched directly, there are pseudo asynchronous
action creators, too. These pseudo asynchronous action creators cannot be dispatched directly but
have to accept the dispatch method as argument. Wouldn’t it be great to use both types of actions
the same without worrying to pass around the dispatch method and without worrying about
asynchronous or synchronous action creators?

Asynchronous Redux 122

Redux Thunk

The previous question led Dan Abramov, the creator of Redux, thinking about a general pattern to
the problem of asynchronous actions. He came up with the library called redux-thunk78 to legitimize
the concept. Synchronous and asynchronous action creators should be dispatched in a similar way
from a Redux store. It is used as middleware in your Redux store.

Code Playground

import { createStore, applyMiddleware } from 'redux';

import thunk from 'redux-thunk';

...

const store = createStore(

rootReducer,

applyMiddleware(thunk)

);

Basically, it creates a middleware for your actions creators. In this middleware, you are enabled
to dispatch asynchronous actions. Apart from dispatching objects, you can dispatch functions with
Redux Thunk. You always dispatched objects as actions before in this book. An action itself is an
object and an action creator returns an action object.

Code Playground

// with plain action

store.dispatch({ type: 'NOTIFICATION_SHOW', text: 'Todo created.' });

// with action creator

store.dispatch(doShowNotification('Todo created.'));

However, now you can pass the dispatch method a function, too. The function will always give you
access to the dispatch method again.

78https://github.com/gaearon/redux-thunk

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

Asynchronous Redux 123

Code Playground

// with thunk function

let naiveId = 0;

store.dispatch(function (dispatch) {

dispatch(doShowNotification('Todo created.', naiveId));

setTimeout(() => {

dispatch(doHideNotification(naiveId));

}, 1000);

naiveId++;

});

The dispatch method of the Redux store when using Redux Thunk will differentiate between passed
objects and functions. The passed function is called a thunk. You can dispatch as many actions
synchronously and asynchronously as you want in a thunk. When a thunk is growing and handles
complex business logic at some point in your application, it is called a fat thunk. You can extract
a thunk function as an asynchronous action creator, that is a higher order function and returns the
thunk function, and can be dispatched the same way as an synchronous action creator.

Code Playground

let naiveId = 0;

function showNotificationWithDelay(text) {

return function (dispatch) {

dispatch(doShowNotification(text, naiveId));

setTimeout(() => {

dispatch(doHideNotification(naiveId));

}, 1000);

naiveId++;

};

}

store.dispatch(showNotificationWithDelay('Todo created.'));

It is similar to the solution without Redux Thunk. However, this time you don’t have to pass around
the dispatch method and instead have access to it in the returned thunk function. Now, when using
it in a React component, the component still only executes a callback function that it receives
via its props. The connected component then dispatches an action, regardless of the action being
synchronously or asynchronously, in the mapDispatchToProps() function.

That are the basics of Redux Thunk. There are a few more things that are good to know about:

Asynchronous Redux 124

• getState(): A thunk function gives you the getState() method of the Redux store as second
argument: function (dispatch, getState). However, you should generally avoid it. It’s best
practice to pass all necessary state to the action creator instead of retrieving it in the thunk.

• Promises: Thunks work great in combination with promises. You can return a promise from
your thunk and use it, for instance, towait for its completion: store.dispatch(showNotificationWithDelay('Todo
created.')).then(...).

• Recursive Thunks: The dispatch method in a thunk can again be used to dispatch an
asynchronous action. Thus, you can apply the thunk pattern recursively.

Hands On: Todo with Notifications

After learning about asynchronous actions, the Todo application could make use of notifications,
couldn’t it? You can continue with the Todo application that you have built in the last chapters. As
an alternative, you can clone it from the GitHub repository79.

The first part of this hands on chapter is a great repetition on using everything you have learned
before asynchronous actions. First, you have to implement a notification reducer that evaluates
actions that should generate a notification.

src/index.js

function notificationReducer(state = {}, action) {

switch(action.type) {

case TODO_ADD : {

return applySetNotifyAboutAddTodo(state, action);

}

default : return state;

}

}

function applySetNotifyAboutAddTodo(state, action) {

const { name, id } = action.todo;

return { ...state, [id]: 'Todo Created: ' + name };

}

You don’t need to create a new action type. Instead, you can reuse the action you already have to
add todos. When a todo gets created, the notification reducer will store a new notification about
the created todo item. Second, you have to include the reducer in your combined reducer to make
it accessible to the Redux store.

79https://github.com/rwieruch/taming-the-state-todo-app/tree/8.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/8.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/8.0.0

Asynchronous Redux 125

src/index.js

const rootReducer = combineReducers({

todoState: todoReducer,

filterState: filterReducer,

notificationState: notificationReducer,

});

The Redux part is done. It is only a reducer that you need to include in the Redux store. The action
gets reused. Third, you have to implement a React component that displays all of your notifications.

src/index.js

function Notifications({ notifications }) {

return (

<div>

{notifications.map(note => <div key={note}>{note}</div>)}

</div>

);

}

Fourth, you can include the connected version of the Notifications component in your TodoApp
component.

src/index.js

function TodoApp() {

return (

<div>

<ConnectedFilter />

<ConnectedTodoCreate />

<ConnectedTodoList />

<ConnectedNotifications />

</div>

);

}

Last but not least, you have to wire up React and Redux in the connected ConnectedNotifications

component.

Asynchronous Redux 126

src/index.js

function mapStateToPropsNotifications(state, props) {

return {

notifications: getNotifications(state),

};

}

const ConnectedNotifications = connect(mapStateToPropsNotifications)(Notificatio\

ns);

The only thing left is to implement the missing selector getNotifications(). Since the notifications
in the Redux store are saved as an object, you have to use a helper function to convert it into an
array. It is good to extract the helper function earlier on, because youmight need such functionalities
more often and shouldn’t couple it to the domain of notifications.

src/index.js

function getNotifications(state) {

return getArrayOfObject(state.notificationState);

}

function getArrayOfObject(object) {

return Object.keys(object).map(key => object[key]);

}

The first part of the “Hands On” chapter is done. You should see a notification in your Todo
application once you create a todo item. The second part will implement a NOTIFICATION_HIDE

action and use it in the notificationReducer to remove the notification from the state. First, you
have to introduce the action type:

src/index.js

const TODO_ADD = 'TODO_ADD';

const TODO_TOGGLE = 'TODO_TOGGLE';

const FILTER_SET = 'FILTER_SET';

const NOTIFICATION_HIDE = 'NOTIFICATION_HIDE';

Second, you can implement an action creator that uses the action type. It will hide (remove) the
notification by id, because they are stored by id:

Asynchronous Redux 127

src/index.js

function doHideNotification(id) {

return {

type: NOTIFICATION_HIDE,

id

};

}

Third, you can capture it in the notificationReducer. The JavaScript destructuring functionality
can be used to omit a property from an object. You can simply omit the notification and return the
remaining object.

src/index.js

function notificationReducer(state = {}, action) {

switch(action.type) {

case TODO_ADD : {

return applySetNotifyAboutAddTodo(state, action);

}

case NOTIFICATION_HIDE : {

return applyRemoveNotification(state, action);

}

default : return state;

}

}

function applyRemoveNotification(state, action) {

const {

[action.id]: notificationToRemove,

...restNotifications,

} = state;

return restNotifications;

}

That was the second part of the “Hands On” chapter that introduced the hiding notification
functionality. The third and last part of the “Hands On” chapter will introduce asynchronous actions
to hide a notification after a couple of seconds. As mentioned earlier, you wouldn’t need a library to
solve this problem. You could simply built on the JavaScript timeout functionality. But for the sake
of learning about asynchronous actions, you will use Redux Thunk. It’s up to you to exchange it
with another asynchronous actions library afterward for the sake of learning about the alternatives.

First, you have to install the redux-thunk80 on the command line:
80https://github.com/gaearon/redux-thunk

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

Asynchronous Redux 128

Command Line: /

npm install --save redux-thunk

Second, you can import it in your code:

src/index.js

...

import thunk from 'redux-thunk';

...

And third, use it in your Redux store middleware:

src/index.js

const store = createStore(

rootReducer,

undefined,

applyMiddleware(thunk, logger)

);

The application should still work. When using Redux Thunk, you can dispatch action objects as
before. However, now you can dispatch thunks (functions), too. Rather than dispatching an action
object that only creates a todo item, you can dispatch a thunk function that creates a todo item
and hides the notification about the creation after a couple of seconds. You have two plain actions
creators, doAddTodo() and doHideNotification(), already in place. You only have to reuse it in
your thunk function.

src/index.js

function doAddTodoWithNotification(id, name) {

return function (dispatch) {

dispatch(doAddTodo(id, name));

setTimeout(function () {

dispatch(doHideNotification(id));

}, 5000);

}

}

In the last step, you have to use the doAddTodoWithNotification() rather than the doAddTodo()

action creator when connecting Redux and React in your TodoCreate component.

Asynchronous Redux 129

src/index.js

function mapDispatchToPropsCreate(dispatch) {

return {

onAddTodo: name => dispatch(doAddTodoWithNotification(uuid(), name)),

};

}

That’s it. Your notifications should work and hide after five seconds. Basically, you have built the
foundation for a notification system in your Todo application. You can use it for other actions, too.
The project can be found in the GitHub repository81.

81https://github.com/rwieruch/taming-the-state-todo-app/tree/9.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/9.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/9.0.0

Asynchronous Redux 130

Asynchronous Actions Alternatives

The whole concept around asynchronous actions led to a handful of libraries which solve this
particular issue. Redux Thunk was only the first one introduced by Dan Abramov. However, he
agrees that there are use cases where Redux Thunk doesn’t solve the problem in an efficient way.
Redux Thunk can be used when you encounter a use case for asynchronous actions for the first
time. But when there are more complex scenarios involved, you can use advanced solutions beyond
Redux Thunk.

All of these solutions address the problem as side-effects in Redux. Asynchronous actions are used to
deal with those side-effects. They are most often used when performing impure operations: fetching
data from an API, delaying an execution or accessing the browser cache. All these operations are
asynchronous and impure, hence are solved with asynchronous actions. In an application, that uses
the functional programming paradigm, you want to have all these impure operations on the edge of
your application. You don’t want to have these close to your core application.

This chapter briefly shows the alternatives that you could use instead of Redux Thunk. Among all
the different alternatives, I only want to introduce you to the most popular and innovative ones.

Redux Saga

Redux Saga82 is the most popular asynchronous actions library for Redux. “The mental model is
that a saga is like a separate thread in your application that’s solely responsible for side effects.”
Basically, it outsources the impure operations into separate threads. These threads can be started,
paused or cancelled with plain Redux actions from your core application. Thereby, threads in Redux
Saga make it simple to keep your side-effects away from your core application. However, threads
can dispatch actions and have access to the state though.

Redux Saga uses JavaScript ES6 Generators83 as underlying technology. That’s why the code reads
like synchronous code. You avoid to have callbacks. The advantage over Redux Thunk is that your
actions stay pure and thus they can be tested well.

Apart from Redux Thunk and Redux Sage, there are other side-effect libraries for Redux. If you want
to try out observables in JavaScript, you could give Redux Observable84 a shot. It builds up on RxJS,
a generic library for reactive programming. If you are interested in another library that uses reactive
programming principles, too, you can try Redux Cycles85.

In conclusion, as you can see, all these libraries, Redux Saga, Redux Observable and Redux Cycles,
make use of different techniques in JavaScript. You can give them a shot to experiment with recent
JavaScript technologies: generators or observables. The whole ecosystem around asynchronous
actions is a great playground to try new things in JavaScript.

82https://github.com/redux-saga/redux-saga
83https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Generator
84https://github.com/redux-observable/redux-observable
85https://github.com/cyclejs-community/redux-cycles

https://github.com/redux-saga/redux-saga
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://github.com/redux-observable/redux-observable
https://github.com/cyclejs-community/redux-cycles
https://github.com/redux-saga/redux-saga
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://github.com/redux-observable/redux-observable
https://github.com/cyclejs-community/redux-cycles

Asynchronous Redux 131

Hands On: Todo with Redux Saga

In a previous chapter, you used Redux Thunk to dispatch asynchronous actions. These were used
to add a todo item with a notification whereas the notification vanishes after a couple of seconds
again. In this chapter you will use Redux Saga instead of Redux Thunk. Therefore, you can install the
former library and uninstall the latter one. You can continue with your previous Todo application.

Command Line: /

npm uninstall --save redux-thunk

npm install --save redux-saga

The action you have used before with a thunk becomes a pure action creator now. It will be used to
trigger the saga thread.

src/index.js

const TODO_ADD_WITH_NOTIFICATION = 'TODO_ADD_WITH_NOTIFICATION';

...

function doAddTodoWithNotification(id, name) {

return {

type: TODO_ADD_WITH_NOTIFICATION,

todo: { id, name },

};

}

Now you can introduce your first saga that listens on this particular action, because the action is
solely used to trigger the saga thread.

src/index.js

import { takeEvery } from 'redux-saga/effects';

...

// sagas

function* watchAddTodoWithNotification() {

yield takeEvery(TODO_ADD_WITH_NOTIFICATION, ...);

}

Asynchronous Redux 132

Most often you will find one part of the saga watching incoming actions and evaluating them. If
an evaluation applies truthfully, it will often call another generator function that handles the side-
effect. That way, you can keep your side-effect watcher maintainable and don’t clutter them with
business logic. In the previous example a takeEvery() effect of Redux Saga is used to handle every
action with the specified action type. Yet there are other effects in Redux Saga such as takeLatest()
which only takes the last of the incoming actions by action type.

src/index.js

import { delay } from 'redux-saga';

import { put, takeEvery } from 'redux-saga/effects';

function* watchAddTodoWithNotification() {

yield takeEvery(TODO_ADD_WITH_NOTIFICATION, handleAddTodoWithNotification);

}

function* handleAddTodoWithNotification(action) {

const { todo } = action;

const { id, name } = todo;

yield put(doAddTodo(id, name));

yield delay(5000);

yield put(doHideNotification(id));

}

As you can see, in JavaScript generators you use the yield statement to execute asynchronous code
synchronously. Only when the function after the yield resolves, the code will execute the next line
of code. Redux Saga comes with a helper such as delay() that can be used to delay the execution
by an amount of time. It would be the same as using setTimeout() in JavaScript, but the delay()
helper makes it more concise when using JavaScript generators and can be used in a synchronous
way when using yield.

Now, you only have to exchange your middleware in your Redux store from using Redux Thunk to
Redux Saga.

src/index.js

import createSagaMiddleware, { delay } from 'redux-saga';

import { put, takeEvery } from 'redux-saga/effects';

...

const rootReducer = combineReducers({

todoState: todoReducer,

filterState: filterReducer,

Asynchronous Redux 133

notificationState: notificationReducer,

});

const logger = createLogger();

const saga = createSagaMiddleware();

const store = createStore(

rootReducer,

undefined,

applyMiddleware(saga, logger)

);

saga.run(watchAddTodoWithNotification);

That’s it. You Todo application should run with Redux Saga instead of Redux Thunk now. The final
application can be found in the GitHub repository86. In the future, it is up to you to decide on an
asynchronous actions library when using Redux. Is it Redux Thunk or Redux Saga? Or do you
decide to try something new with Redux Observable or Redux Cycles? The Redux ecosystem is full
of amenities to try cutting edge JavaScript features such as generators or observables.

86https://github.com/rwieruch/taming-the-state-todo-app/tree/10.0.0

https://github.com/rwieruch/taming-the-state-todo-app/tree/10.0.0
https://github.com/rwieruch/taming-the-state-todo-app/tree/10.0.0

Redux Patterns, Techniques and Best
Practices
There are several patterns and best practices that you can apply in a Redux application. I will go
through a handful of them to point you in the right direction. However, the evolving patterns and
best practices around the ecosystem are changing all the time. You will want to read more about
these topics on your own.

Redux Patterns, Techniques and Best Practices 135

Using JavaScript ES6

So far, you have written your Redux code mostly in JavaScript ES5. Redux is inspired by the
functional programming paradigm and uses a lot of its concepts: immutable data structures and
pure functions. When using Redux in your scaling application, you will often find yourself using
pure functions that solve only one problem. For instance, an action creator only returns an action
object, a reducer only returns the new state and a selector only returns derived properties. You
will embrace this mental model and use it in Redux agnostic code, too. You will see yourself more
often using functions that only solve one problem, using higher order functions to return reusable
functions and compose functions into each other. You will move toward a functional programming
style with Redux.

JavaScript ES6 and beyond complements the functional programming style in JavaScript perfectly.
You only have to look at the following example to understand how much more concisely higher
order functions can be written with JavaScript ES6 arrow functions.

Code Playground

// JavaScript ES5

function higherOrderFunction() {

return function () {

...

};

}

// JavaScript ES6

const higherOrderFunction = () => { ... };

It’s a higher order function that is much more readable in JavaScript ES6. You will find yourself
using higher order functions more often when programming in a functional style. It will happen
that you not only use one higher order function, but a higher order function that returns a higher
order function that returns a function. Again it becomes easier to read when using JavaScript ES6.

Code Playground

// JavaScript ES5

function higherOrderFunction() {

return function () {

return function () {

...

}

};

}

Redux Patterns, Techniques and Best Practices 136

// JavaScript ES6

const higherOrderFunction = () => () => { ... };

I encourage you to apply these in your Redux code.

Code Playground

// action creator

const doAddTodo = (id, name) => ({

type: ADD_TODO,

todo: { id, name },

});

// selector

const getTodos = (state) => state.todos;

// action creators using Redux Thunk

const showNotificationWithDelay = (text) => (dispatch) => {

dispatch(doShowNotification(text));

setTimeout(() => dispatch(doHideNotification()), 1000);

}

The JavaScript community shifts in the direction of functional programming and embraces more
than ever this style. Functional programming let’s you write more predictable code by embracing
pure functions without side-effects and immutable data structures. JavaScript ES6 and beyond make
it easier and more readable to write in a functional style.

Redux Patterns, Techniques and Best Practices 137

Naming Conventions

In Redux, you have a handful of different types of functions. You have action creators, selectors and
reducers. It is always good to name them accordingly to their type. Other developers will have an
easier time identifying the function type. Just following a naming convention for your functions,
you can give yourself and others a valuable information about the function itself.

Personally, I follow this naming convention with Redux functions. It uses prefixes for each function
type:

• action creators: doSomething
• reducers: applySomething
• selectors: getSomething
• sagas: watchSomething, handleSomething

In the previous chapters, the example code always used this naming convention. In addition, it
clarifies things when using higher order functions. Remember the mapDispatchToProps() function
when connecting Redux to React?

Code Playground

const mapStateToProps = (state) => ({

todos: getTodos(state),

});

const mapDispatchToProps = (dispatch) => ({

onToggleTodo: (id) => dispatch(doToggleTodo(id)),

});

The functions themselves become more concise by using JavaScript ES6 arrow functions. But there
is another clue that makes proper naming so powerful. Solely from a naming perspective, you
can see that the mapStateToProps() and mapDispatchToProps() functions transform the returned
properties from the Redux world to the React world. The connected component doesn’t know about
selectors or actions creators anymore. As you can see, that is already expressed in the transformed
props and functions. They are named todos and onToggleTodo. There are no remains from the
Redux world, from a technical perspective but also from a pure naming perspective. That’s powerful,
because your underlying components are Redux agnostic.

So far, the topic was only about function naming. But there is another part in Redux that can be
named properly: action types. Consider the following action type names:

Redux Patterns, Techniques and Best Practices 138

Code Playground

const ADD_TODO = 'ADD_TODO';

const TODO_ADD = 'TODO_ADD';

Most cultures read from left to right. That’s conveyed in programming, too. So which action type
naming makes more sense? Is it the verb or the subject? You can decide on your own, but become
clear about a consistent naming convention for your action types. Personally, I find it easier to scan
when I have the subject first. When using Redux Logger in a scaling application where a handful
actions can be dispatched at once, I find it easier to scan by subject than by verb.

You can even go one step further and apply the subject as domain prefix for your action types.

Code Playground

const todo/ADD = 'todo/ADD';

These are only opinionated naming conventions for those types of functions and constants in Redux.
You can come up with your own. But do yourself and your fellow developers a favor and reach an
agreement first and then apply them consistently through your code base.

Redux Patterns, Techniques and Best Practices 139

The Relationship between Actions and Reducers

Actions and reducers are not strictly coupled. They only share an action type. A dispatched
action, for example with the action type SOMETHING_ADD, can be captured in multiple reducers that
utilize SOMETHING_ADD. That’s an important fact when implementing a scaling state management
architecture in your application.

When coming from an object-oriented programming background though, you might abuse ac-
tions/reducers as setters and selectors as getters. You will couple actions and reducers in a 1:1
relationship. I will call it the command pattern in Redux. It can be useful in some scenarios, as
I will point out later, but in general it’s not the philosophy of Redux.

Redux can be seen as event bus of your application. You can send events (actions) with a payload
and an identifier (action type) into the bus and it will pass potential consumer (reducers). A part of
these consumers is interested in the event. That’s what I call the event pattern that Redux embraces.

You can say that the higher you place your actions on the spectrum of abstraction, the more reducers
are interested in it. The action becomes an event. The lower you place your actions on the spectrum
of abstraction, the less reducers are interested in it. In the end, most often only one reducer can
consume it when it is placed on a lower place of the spectrum of abstraction. The action becomes a
command. It is a concrete action rather than an abstract action. It is important to note, though, that
you have to keep the balance between abstraction and concreteness. Too abstract actions can lead to
a mess when too many reducers consume it. Too concrete actions might only be used by one reducer
all the time. Most developers run into the latter scenario though. In Redux, obviously depending on
your application, it should be a healthy mix of both.

In the book, you have encountered a relationship of 1:1 between action and reducer most of the time.
Let’s take an action that completes a todo as demonstration:

Code Playground

function doCompleteTodo(id) {

return {

type: TODO_COMPLETE,

todo: { id },

};

}

function todosReducer(state = [], action) {

switch(action.type) {

case TODO_COMPLETE : {

return applyCompleteTodo(state, action);

}

default : return state;

}

}

Redux Patterns, Techniques and Best Practices 140

Now, imagine that there should be a measuring of the progress of the Todo application user. The
progress will always start at zero when the user opens the application. When a todo gets completed,
the progress should increase by one. A potentially easy solution could be counting all completed
todo items. However, since there could be completed todo items already, and you want to measure
the completed todo items in this session, the solution would not suffice. The solution could be a
second reducer that counts the completed todos in this session.

Code Playground

function progressReducer(state = 0, action) {

switch(action.type) {

case TODO_COMPLETE : {

return state++;

}

default : return state;

}

}

The counter will increment when a todo got completed. Now, you can easily measure the progress
of the user. Suddenly, you have a 1:2 relationship between action and reducer. Nobody forces you
not to couple action and reducer in a 1:1 relationship, but it always makes sense to be creative in
this manner. What would happen otherwise? Regarding the progress measurement issue, you might
come up with a second action type and couple it to the previous reducer:

Code Playground

function doTrackProgress() {

return {

type: PROGRESS_TRACK,

};

}

function progressReducer(state = 0, action) {

switch(action.type) {

case PROGRESS_TRACK : {

return state++;

}

default : return state;

}

}

The action would be dispatched in parallel with the COMPLETE_TODO action.

Redux Patterns, Techniques and Best Practices 141

Code Playground

dispatch(doCompleteTodo('0'));

dispatch(doTrackProgress());

But that would miss the point in Redux. You would want to come up with these commonalities
to make your actions more abstract and be used by multiple reducers. My rule of thumb for this:
Approach your actions as concrete actions with a 1:1 relationship to their reducers, but keep yourself
always open to reuse them as more abstract actions in other reducers.

Redux Patterns, Techniques and Best Practices 142

Folder Organization

Eventually, your Redux application grows and you cannot manage everything - reducers, action
creators, selectors, store and view - in one file. You will have to split up the files. Fortunately,
JavaScript ES6 brings import87 and export88 statements to distribute functionalities in files. If you
are not familiar with these, you should read about them.

In this chapter, I want to show you two approaches to organize your folder and files in a Redux
application. The first approach, the technical folder organization, is used in smaller applications.
Once your application scales andmore than one team in your organization is working on the project,
you can consider the feature folder organization. In addition, you will learn about best practices
for your file and folder structure in this chapter.

Technical Folder Organization

The technical separation of concerns is used in smaller applications. Basically, in my opinion, there
are two requirements to use this approach:

• the application is managed by only one person or one team, thus has less conflict potential
when working on the same code base

• the application is small from a lines of code perspective and can be managed by one person
or one team

In conclusion, it depends on the size of the team and the size of the code base. Now, how to separate
the files? They get separated by their technical aspects:

Folder Organization

-app

--reducers

--actions creators

--selectors

--store

--constants

--components

The reducers, action creators, selectors and store should be clear. In these folders you have all the
different aspects of Redux. In the components folder you have your view layer. When using React,
that would be the place where you will find your React components. In the constants folder you can
have any constants, but also the action types of Redux. These can be imported in the action creators
and reducers. An elaborated folder/file organization split by technical aspects might look like the
following:

87https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import
88https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/export

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/export

Redux Patterns, Techniques and Best Practices 143

Folder Organization

-app

--reducers

---todoReducer.js

---filterReducer.js

---notificationReducer.js

--actions creators

---filters.js

---todos.js

---notifications.js

--selectors

---filters.js

---todos.js

---notifications.js

--store

---store.js

--constants

---actionTypes.js

--components

---TodoList.js

---TodoItem.js

---Filter.js

---Notifications.js

What are the advantages and disadvantages of this approach? The most important advantage is that
reducers and action creators are not coupled. They are loosely arranged in their folders. It embraces
the notion of Redux to capture any action in any reducer. Reducers and action creators are not in a
1:1 relationship. In addition, all Redux functionalities are reachable from a top level. None of these
functionalities are hidden in a lower level and thus less accessible. This approach embraces the event
pattern. A disadvantage of this approach, hence the two requirements, is that it doesn’t scale well.
Each technical folder will grow endlessly. There are no constraints except for the separation by type.
It can become messy after you have introduced tons of reducers, action creators and selectors.

Feature Folder Organization

The second approach, the separation by feature, is most often used in scaling applications. You have
a greater flexibility in grouping the features, because you can always split up bigger features to
smaller ones and thus keep the folders lightweight.

Redux Patterns, Techniques and Best Practices 144

Folder Organization

-app

--todo

--filter

--notification

--store

An elaborated folder/file organization might look like the following:

Folder Organization

-app

--todo

---TodoList.js

---TodoItem.js

---reducer.js

---actionCreators.js

---selectors.js

--filter

---Filter.js

---reducer.js

---actionCreators.js

---selectors.js

--notification

---Notifications.js

---reducer.js

---actionCreators.js

---selectors.js

--store

---store.js

This approach, separating by features, is way more flexible than the previous approach. It gives you
more freedom to arrange your folders and files. When using this approach, there are more ways to
accomplish it. You don’t necessarily have to follow the example above.

What are the advantages and disadvantages of this approach? It has the same advantages and
disadvantages as the technical folder organization but negated. Instead of making action creators
and reducers accessible on a top level, they are hidden in a feature folder. In a scaling application
with multiple teams, other teams will most likely not reuse your action creators and reducers but
implement their own. Another disadvantage is that it groups action creators and reducers in a 1:1
relationship which goes against the overarching idea of Redux. You embrace a command pattern
instead of an event pattern. The advantage on the other side, and that’s why most teams in a scaling

Redux Patterns, Techniques and Best Practices 145

application are using this approach, is that it grows well. Teams can work on separate feature folders
and don’t run into conflicts. Still, they can follow the overarching state management flow, when
using a middleware library like redux-logger.

Even though the feature folder organization bears a lot of pitfalls by embracing the command
pattern, it is often used in scaling applications with several development teams. Therefore, I can
give one advice: Make your action creators, reducers and selectors accessible to everyone so that they
can be reused. It can happen by documentation, word of mouth or another variation of folder/file
organization.

Ducks

In Redux, there exists another concept called ducks. It relates to the organization of action creators,
action types and reducers as tuples. The ducks concept bundles these tuples into self contained
modules. Often, these modules end up being only one file. The official ducks pattern has a bunch of
guidelines which you can read up in the GitHub repository89. However, you wouldn’t need to apply
all of these. For instance, in the Todo application a duck file for the filter domain might look like the
following:

Code Playground

const FILTER_SET = 'FILTER_SET';

function filterReducer(state = 'SHOW_ALL', action) {

switch(action.type) {

case FILTER_SET : {

return applySetFilter(state, action);

}

default : return state;

}

}

function applySetFilter(state, action) {

return action.filter;

}

function doSetFilter(filter) {

return {

type: FILTER_SET,

filter,

};

}

89https://github.com/erikras/ducks-modular-redux

https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux

Redux Patterns, Techniques and Best Practices 146

export default filterReducer;

export {

doSetFilter,

};

The drawbacks of the ducks concept are similar to the feature folder approach. You couple actions
and reducers, hence no one will embrace to capture actions in multiple reducers. As long as action
and reducer are coupled, the ducks concept makes sense. Otherwise, it shouldn’t be applied too often.
Instead, you should embrace the idea of Redux to keep your reducers and action creators accessible
on a top level.

Redux Patterns, Techniques and Best Practices 147

Testing

The book will not dive deeply into the topic of testing, but it shouldn’t be unmentioned. Testing your
code in programming is essential and should be seen as mandatory. You want to keep the quality
of your code high and an assurance that everything works. However, testing your code can often
be tedious. You have to setup, mock or spy things before you can finally start to test it. Or you you
have to cover a ton of edge cases in your one huge code block. But I can give you comfort by saying
that this is not the case when testing state management done with Redux. I will show you how you
can easily test the necessary parts, keep your efforts low and stay lazy.

Perhaps you have heard about the testing pyramid. There are end-to-end tests, integration tests and
unit tests. If you are not familiar with those, the book gives you a quick and basic overview. A unit
test is used to test an isolated and small block of code. It can be a single function that is tested by an
unit test. However, sometimes the units work well in isolation yet don’t work in combination with
other units. They need to be tested as a group as units. That’s where integration tests can help out by
covering whether units work well together. Last but not least, an end-to-end test is the simulation
of a real user scenario. It could be an automated setup in a browser simulating the login flow of an
user in a web application. While unit tests are fast and easy to write and to maintain, end-to-end
tests are the opposite of this spectrum.

How many tests do I need of each type? You want to have many unit tests to cover your isolated
functions. After that, you can have several integration tests to cover that the most important
functions work in combination as expected. Last but not least, you might want to have only a few
end-to-end tests to simulate critical scenarios in your web application. That’s it for the general
excursion in the world of testing. Now, how does it apply to state management with Redux?

Redux embraces the functional programming style. Your functions are pure and you don’t have to
worry about any side-effects. A function always returns the same output for the same input. Such
functions are easy to test, because you only have to give them an input and expect the output because
there is a no side-effect guarantee. That’s the perfect fit for unit tests, isn’t it? In conclusion, it makes
state management testing when build with Redux a pleasure.

In Redux, you have different groups of functions: action creators, reducers, selectors. For each of
these groups, you can see a pattern for their input and output. These can be applied to a test pattern
which can be used as blueprint for a unit test for each group of functions.

Input Pattern:

• action creators can have an optional input that becomes their optional payload
• selectors can have an optional input that supports them to select the substate
• reducers will always receive a previous state and action

Output Pattern:

• action creators will always return an object with a type and optional payload

Redux Patterns, Techniques and Best Practices 148

• selectors will always return a substate of the state
• reducers will always return a new state

Test Pattern:

• when invoking an action creator, the correct return object should be expected
• when invoking a selector, the correct substate should be expected
• when invoking a reducer, the correct new state should be expected

How does that apply in code? The book will show it in pseudo code, because it will not make any
assumption about your testing libraries. Yet it should be sufficient to pick up these patterns for each
group of functions (action creators, reducers, selectors) to apply them in your unit tests.

Action Creators:

Code Playground

// whereas the payload is optional

const payload = { ... };

const action = doSomething(payload);

const expectedAction = {

type: 'DO_SOMETHING',

payload,

};

expect(action).to.equal(expectedAction);

Selectors:

Code Playground

// whereas the payload is optional

const state = { ... };

const payload = { ... };

const substate = getSomething(state, payload);

const expectedSubstate = { ... };

expect(substate).to.equal(expectedSubstate)

Reducers:

Redux Patterns, Techniques and Best Practices 149

Code Playground

const previousState = { ... };

const action = {

type: 'DO_SOMETHING',

payload,

};

const newState = someReducer(previousState, action);

const expectedNewState = { ... };

expect(newState).to.equal(expectedNewState);

These test patterns will always stay the same for their aspects. You only have to fill in the blanks. You
can even give yourself an easier time and setup automated code snippets for your editor of choice.
For instance, typing “rts” (abbr. for “redux test selector”) gives you the blueprint for a selector test.
The other two snippets could be “rtr” (redux test reducer) and “rta” (redux test action). After that,
you only have to fill in the remaining things.

These test patterns for state management show you how simple testing becomes when working with
the clear constraints of a library like Redux. Everything behaves the same, it is predictable, and thus
can be tested every time the in the same way. When setting up automated code snippets, you will
save yourself a lot of time, yet have a great test coverage for your whole state management. You can
even go one step further and apply test-driven development90 (TDD) which basically means you test
before you implement.

There is another neat helper that can ensure that your state stays immutable. Because you never
know if you accidentally mutate your state even though it is forbidden in Redux. I guess, there is
a handful of libraries around this topic, but I use deep-freeze91 in my tests to ensure that the state
(and even actions) doesn’t get mutated.

Code Playground

import deepFreeze from 'deep-freeze';

const previousState = { ... };

const action = {

type: 'DO_SOMETHING',

payload,

};

deepFreeze(previousState);

90https://en.wikipedia.org/wiki/Test-driven_development
91https://github.com/substack/deep-freeze

https://en.wikipedia.org/wiki/Test-driven_development
https://github.com/substack/deep-freeze
https://en.wikipedia.org/wiki/Test-driven_development
https://github.com/substack/deep-freeze

Redux Patterns, Techniques and Best Practices 150

const newState = someReducer(previousState, action);

const expectedNewState = { ... };

expect(newState).to.equal(expectedNewState);

That’s it for testing your different aspects when using Redux. It can be accomplished by using
unit tests. You could apply integration tests, too, for instance to test an action creator and reducer
altogether. After all, you have a blueprint for testing these functions all the time at your hand and
there is no excuse anymore to not test your code.

Redux Patterns, Techniques and Best Practices 151

Error Handling

The topic of error handling is rarely touched in programming. Often, the topic is avoided by the
community and it is hard to find a common sense about it. This chapter gives you basic guidance
on how you could provide error handling in your Redux application.

Error handling is often involved when making requests to an API. You have learned about
asynchronous actions in Redux that can be used for these kind of side-effects. But there was no
saying about error handling in those side-effects so far. How to catch the errors and how to make
them visible for your application end-user?

Basically, an error in an application can be represented as a state. That’s why the topic is discussed
in a state management book in the first place. For instance, imagine that you get your todo items
from a server request. You would have an API on the server-side that exposes these todo items.
Once you fetch these todo items from the API, you would have to deal with error handling, because
a request could always fail. The following request returns a JavaScript promise. The fetch can be
either successfully resolved in a then() method or yields an error in a catch() method.

Code Playground

fetch('my/todos/api').then(function(response) {

return response.json();

}).then(function(todos) {

// do something with todos

}).catch(function(error) {

// do something with error

});

When using Redux asynchronous actions, the request could live in a Redux Thunk.

Code Playground

function getTodos(dispatch) {

fetch('my/todos/api').then(function(response) {

return response.json();

}).then(function(todos) {

// do something with todos

}).catch(function(error) {

// do something with error

});

}

Now, it would be up to you to store either the todos or the error as state in your Redux store. You
could have two potential actions:

Redux Patterns, Techniques and Best Practices 152

Code Playground

const TODOS_FETCH_SUCCESS = 'TODOS_FETCH_SUCCESS';

const TODOS_FETCH_ERROR = 'TODOS_FETCH_ERROR';

These could be used in your Redux Thunk to store both potential outcomes:

Code Playground

function getTodos(dispatch) {

fetch('my/todos/api').then(function(response) {

return response.json();

}).then(function(todos) {

dispatch({ type: TODOS_FETCH_SUCCESS, todos });

}).catch(function(error) {

dispatch({ type: TODOS_FETCH_ERROR, error });

});

}

The todo reducer would have to deal with both actions now. One that stores the todo items and one
that stores the error object.

Code Playground

const initialState = {

todos: [],

error: null,

};

function reducer(state = initialState, action) {

switch(action.type) {

case 'TODOS_FETCH_SUCCESS' : {

return applyFetchTodosSuccess(state, action);

}

case 'TODOS_FETCH_ERROR' : {

return applyFetchTodosError(state, action);

}

default : return state;

}

}

...

Redux Patterns, Techniques and Best Practices 153

That’s it basically for the state management part. Whereas the applyFetchTodosError() function
would set the error object in the state, the applyFetchTodosSuccess() function would set the list
of todos. In addition, the success function would have to reset the error property in the state to null
again, because imagine you would do a second request after the first request has failed. When the
second request was successful, you would want to store the todo items but reset the error state.

In your view layer, depending on the todo state, you could decide whether to show an error message,
because there is an error object in the todo state, or to show the list of todos. When there is an error
message displayed, you could provide your end-user with a button to try fetching the todos again.
When the second request is successful, the error object is set to null and instead the todo items are
set in the state. The view layer could display the list of todo items now.

After all, there is no magic behind error handling in Redux. Whenever an error occurs, you would
store it in your state. When the view layer notices an error in the state, it could use conditional
rendering to show an error message instead of the assumed result.

(React in) Redux FAQ
I intend to grow this section organically to answer frequently asked questions to the best of
my knowledge. These are questions that come up often when discussing Redux standalone or as
complementing part of React.

(React in) Redux FAQ 155

Redux vs. Local State

When introducing Redux to a React application, people are unsure how to treat the local state with
this.state and this.setState(). Should they replace the local state entirely with Redux or keep a
mix of both? The larger part of the community would argue it is the latter and I agree with it. Local
state doesn’t become obsolete when using a sophisticated state management library such as Redux.
You would still use it.

Imagine your application grows in line of code and your size of developers working on this
application grows as well. Your global state in Redux will necessarily grow, too. However, you want
to keep the global state meaningful and reusable from multiple parties (developers, components)
in your application. That’s why not everything should end up in the global state. In a growing
application, you should always revisit your global state and make sure that it is not cluttered and
arranged thoughtfully.

The cluttering happens when too much state ends up in the global state that is only used by a single
party (one component, one part of the component tree). You should think twice about this kind of
state and evaluate whether it would make more sense to put in the local state. Always ask yourself:
Who is interested in this state? A balanced mixture of local state and sophisticated state will make
your application maintainable and predictable in the long run.

The boundaries between local state and sophisticated state will blur when using a state management
library like MobX. You will get to know this library later as alternative to Redux. But there too, you
can plan your state thoughtfully in advance in your application.

In general, the usage of Redux state should be kept to a minimum. A good rule of thumb is to keep the
state close to your component with local state but evaluate later whether another party is interested
in the state. If another party manages an equivalent state structure in its local state, you could use a
reusable higher order component that manages the state. If the state is shared, you could try to lift
your state up or downthe component hierarchy. However, if lifting state doesn’t solve the problem
for you, because the state is shared across the application, you should consider to use Redux for it.
In the end, after revisiting all your possibilities when only using React’s local state, you might not
need Redux in your application.

(React in) Redux FAQ 156

View vs. Entity State

In the beginning of the book, I differentiated between view state and entity state. Imagine you have
a page that does both displaying a list of items and showing opt-in modals for each item to remove
or edit the item. While the former would be the entity state, the latter would be the view state. The
entity state, the list of items, most often comes from a backend. But the view state is triggered by
the user only in the frontend. Is there a pattern of where to store which kind of state?

The entity state often comes from the backend. It is fetched asynchronously. In applications, you
want to avoid to fetch entities more than once. A good practice would be to fetch the entities once
and not again when they are already there. Thus, they would have to be stored somewhere where
several parties know that these entities are already fetched. The global state is a perfect place to store
them.

The view state is altered only in the frontend. Often, it isn’t shared across the application, because,
for instance, only the modal knows if it is opened or closed. Since it doesn’t need to be shared, you
can use the local state and avoid to clutter in the global state.

Imagine you have a component that has tabs. Each tab gives you the possibility to change the
representation of displayed items. For instance, the user can choose a grid or a list layout. It is
absolutely fine to store this state in the local state. In addition, you can give your user an improved
user experience. You could store the selected tab in the local storage of your browser, too, and when
the user returns to the page, you rehydrate the state from the local storage into your local state. The
user will always find his/her preferred tab as the selected one.

(React in) Redux FAQ 157

Accidental vs. Planned State

Can you plan your state? I would argue that you can plan it. You can plan which part of the state goes
into the global state and which part goes into the local state. For instance, you know about the view
and entity states. In addition, you can put some of your state in the local storage to improve the user
experience. However, in an evolving application, your state grows and the structure changes. What
can you do about it? My recommendation is always revisiting your state arrangement and structure.
There is always room for improvements. You should refactor it early to keep it maintainable and
predictable in the long run.

Redux State as Architecture
The book taught you the practical usage of Redux. You have learned about the main parts in the
Redux state management architecture: actions, reducers and the store.

Concept Playground

Action -> Reducer(s) -> Store

The chain is connected to the view layer by something (e.g. react-reduxwith mapStateToProps() and
mapDispatchToProps()) that enables you to write connected components. These components have
access to the Redux store. They are used to receive state or to alter the state. They are a specialized
case of a container component in the presenter and container pattern when using components.

Concept Playground

View -> (mapDispatchToProps) -> Action -> Reducer(s) -> Store -> (mapStateToProp\

s) -> View

All other components are not aware of any local or sophisticated state management solution. They
only receive props, except they have their own local state management (such as this.state and
this.setState() in React).

State can be received directly by operating on the state object or indirectly by selecting it with
selectors.

Code Playground

// directly from state object

state.something;

// indirectly from state object via selector

const getSomething = (state) => state.something;

State can be altered by dispatching an action directly or by using action creators that return an
action object.

Redux State as Architecture 159

Code Playground

// dispatching an action directly

dispatch({ type: 'ANY_TYPE', payload: anyPayload });

// dispatching an action indirectly via action creator

function doAnything(payload) {

return {

type: 'ANY_TYPE',

payload,

};

}

dispatch(doAnything(anyPayload));

In order to keep your state predictable and manageable in the reducers, you can apply techniques for
an improved state structure. You can normalize your state to have always a single source of truth.
That means you don’t have to operate on duplicated entities, but only on one reference of the entity.
In addition, it keeps the state flat. It is easier to manage only by using spread operators.

Around these practical usages, you have learned several supporting techniques. There are tons
of opinionated ways to organize your folders and files. The book showcased two of the main
approaches, but they vary in their execution from developer to developer, team to team or company
to company. Nevertheless, you should always bear in mind to keep Redux at a top level. It is not
used to manage the state of one single component. Instead it is used to wire dedicated components
to the store in order to enable them to alter and to retrieve the state from it.

Coupling actions and reducers is fine, but always think twice when adding another action type. For
instance, perhaps a action type could be reused in another reducer. When reusing action types, you
avoid to end up with fat thunks when using Redux thunk. Instead of dispatching several actions,
your thunk could dispatch only one abstract action that is reused in more than one reducer.

You have learned that you can plan your state management ahead. There are use cases where
local state makes more sense than sophisticated state. Both can be used and should be used in a
scaling application. By combining local state to the native local storage of the browser, you can
give the user of your application an improved UX. In addition, you can plan the state ahead too.
Think about view state and entity state and where it should live in your application. You can give
your reducers difference domains as their ownership such as todoReducer, filterReducer and
notificationReducer. However, once you have planned your state management and state, don’t
stick to it. When growing your application, always revisit those things to apply refactorings. That
will help you to keep your state manageable, maintainable and predictable in the long run.

Redux State as Architecture 160

Hands On: Hacker News with Redux

In this chapter, you will be guided to build your own Hacker News92 application with React and
Redux. Hacker News is a platform to share news in and around the technology domain. It provides
a public API93 to retrieve their data. Some of you might have read the Road to learn React94 where
you have build a Hacker News application as well. In that book it was only plain React. Now you
can experience the differences when using Redux in this book.

You are going to use create-react-app to bootstrap your project. You can read the official documen-
tation95 to get to know how it works. After you have installed it, you simply start by choosing a
project name for your application.

Command Line

create-react-app react-redux-hackernews

After the project was created for you, you can navigate into the project folder, open your editor and
start the application.

Command Line

cd react-redux-hackernews

npm start

In your browser it should show the defaults that come with create-create-app.

Part 1: Project Organization

Before you familiarize yourself with the folder structure in this part, you will adapt it to your own
needs. First, navigate into the src/ folder and delete the boilerplate files that are not needed for the
application.

Command Line: /

cd src

rm logo.svg App.js App.test.js App.css

Even the App component is removed, because you’ll organize it in folders instead of in the top
level src/ folder. Now, from the src/ folder, create the folders for an organized folder structure by a
technical separation.

92https://news.ycombinator.com/
93https://hn.algolia.com/api
94https://www.robinwieruch.de/the-road-to-learn-react/
95https://github.com/facebookincubator/create-react-app

https://news.ycombinator.com/
https://hn.algolia.com/api
https://www.robinwieruch.de/the-road-to-learn-react/
https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app
https://news.ycombinator.com/
https://hn.algolia.com/api
https://www.robinwieruch.de/the-road-to-learn-react/
https://github.com/facebookincubator/create-react-app

Redux State as Architecture 161

Command Line: src/

mkdir components reducers actions selectors store sagas api constants

Your folder structure should be similar to the following:

Folder Structure

-src/

--actions/

--api/

--components/

--constants/

--reducers/

--sagas/

--selectors/

--store/

--index.css

--index.js

Navigate in the components/ folder and create the following files for your independent components.
These are not all components yet. You will create more of them on your own for this application.

Command Line: src/

cd components

touch App.js Stories.js Story.js App.css Stories.css Story.css

You can continue this way and create the remaining files to end up with the following folder
structure.

Folder Structure

-src/

--actions/

--api/

--components/

---App.js

---App.css

---Stories.js

---Stories.css

---Story.js

---Story.css

Redux State as Architecture 162

--constants/

---actionTypes.js

--reducers/

---index.js

--sagas/

---index.js

--selectors/

--store/

---index.js

--index.css

--index.js

Now you have your foundation of folders and files for your React and Redux application. Except for
the specific component files that you already have, everything else can be used as a blueprint, your
own boilerplate, for any application using React and Redux. But only if it is separated by technical
concerns. In a growing application, you might want to separate your folders by feature. You can find
this part of the chapter in the GitHub repository96.

Part 2: Plain React Components

In this part you will implement your plain React component architecture that only receives all
necessary props from their parent components. These props can include callback functions that will
enable interactions later on. The point is that the props don’t reveal that they are props themselves
that are located in the parent component, state from the local state or even Redux state. The callback
functions are plain functions too. Thus the components are not aware of using local state methods
or Redux actions to alter the state.

In your entry point to React, where your root component gets rendered into the DOM, adjust the
import of the App component by including the components folder in the path.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './components/App';

import './index.css';

ReactDOM.render(<App />, document.getElementById('root'));

In the next step, you can come up with sample data that can be used in the React components. The
sample data becomes the input of the App component. At a later point in time, this data will get
fetched from the Hacker News API.

96https://github.com/rwieruch/react-redux-hackernews/tree/d5ab6a77653ee641d339c0a6a91c8444eff3f699

https://github.com/rwieruch/react-redux-hackernews/tree/d5ab6a77653ee641d339c0a6a91c8444eff3f699
https://github.com/rwieruch/react-redux-hackernews/tree/d5ab6a77653ee641d339c0a6a91c8444eff3f699

Redux State as Architecture 163

src/index.js

...

const stories = [

{

title: 'React',

url: 'https://facebook.github.io/react/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

}, {

title: 'Redux',

url: 'https://github.com/reactjs/redux',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

ReactDOM.render(

<App stories={stories} />,

document.getElementById('root')

);

The three components, App, Stories and Story, are not defined yet but you have already created
the files. Let’s define them component by component. First, the App receives the sample stories from
above as props and its only responsibility is to render the Stories component and to pass over the
stories as props.

src/components/App.js

import React from 'react';

import './App.css';

import Stories from './Stories';

const App = ({ stories }) =>

<div className="app">

<Stories stories={stories} />

</div>

Redux State as Architecture 164

export default App;

Second, the Stories component receives the stories as props and renders for each story a Story

component. You want to default to an empty array that the Stories component doesn’t crash when
the list of stories is null.

src/components/Stories.js

import React from 'react';

import './Stories.css';

import Story from './Story';

const Stories = ({ stories }) =>

<div className="stories">

{(stories || []).map(story =>

<Story

key={story.objectID}

story={story}

/>

)}

</div>

export default Stories;

Third, the Story component renders a few properties of the story object. The story object gets
already destructured from the props in the function signature. Furthermore the story object gets
destructured as well.

src/components/Story.js

import React from 'react';

import './Story.css';

const Story = ({ story }) => {

const {

title,

url,

author,

num_comments,

points,

} = story;

Redux State as Architecture 165

return (

<div className="story">

{title}

{author}

{num_comments}

{points}

</div>

);

}

export default Story;

You can start your application again with npm start on the command line. Both sample stories
should be displayed in plain React. You can find this part of the chapter in the GitHub repository97.

Part 3: Apply Styling

The application looks a bit dull without any styling. Therefore you can drop in some of your own
styling or use the styling that’s provided in this part. First, the application would need some general
style that can be defined in the root style file.

src/index.css

body {

color: #222;

background: #f4f4f4;

font: 400 14px CoreSans, Arial,sans-serif;

}

a {

color: #222;

}

a:hover {

text-decoration: underline;

}

ul, li {

97https://github.com/rwieruch/react-redux-hackernews/tree/f5843d2a06033cd045e6d0427993e30e289031a7

https://github.com/rwieruch/react-redux-hackernews/tree/f5843d2a06033cd045e6d0427993e30e289031a7
https://github.com/rwieruch/react-redux-hackernews/tree/f5843d2a06033cd045e6d0427993e30e289031a7

Redux State as Architecture 166

list-style: none;

padding: 0;

margin: 0;

}

input {

padding: 10px;

border-radius: 5px;

outline: none;

margin-right: 10px;

border: 1px solid #dddddd;

}

button {

padding: 10px;

border-radius: 5px;

border: 1px solid #dddddd;

background: transparent;

color: #808080;

cursor: pointer;

}

button:hover {

color: #222;

}

.button-inline {

border-width: 0;

background: transparent;

color: inherit;

text-align: inherit;

-webkit-font-smoothing: inherit;

padding: 0;

font-size: inherit;

cursor: pointer;

}

.button-active {

border-radius: 0;

border-bottom: 1px solid #38BB6C;

}

Redux State as Architecture 167

*:focus {

outline: none;

}

Second, the App component gets a few CSS classes:

src/components/App.css

.app {

margin: 20px;

}

.interactions, .error {

text-align: center;

}

Third, the Stories component gets some style:

src/components/Stories.css

.stories {

margin: 20px 0;

}

.stories-header {

display: flex;

line-height: 24px;

font-size: 16px;

padding: 0 10px;

justify-content: space-between;

}

.stories-header > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

And last but not least, the Story component will get styled too:

Redux State as Architecture 168

src/components/Story.css

.story {

display: flex;

line-height: 24px;

white-space: nowrap;

margin: 10px 0;

padding: 10px;

background: #ffffff;

border: 1px solid #e3e3e3;

}

.story > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

When you start your application again, it seems more organized by its styling. But there is still
something missing for displaying the stories properly. The columns for each story should be aligned
and perhaps there should be a heading for each column. First, you can define an object to describe
the columns.

src/components/Stories.js

import React from 'react';

import './Stories.css';

import Story from './Story';

const COLUMNS = {

title: {

label: 'Title',

width: '40%',

},

author: {

label: 'Author',

width: '30%',

},

comments: {

label: 'Comments',

width: '10%',

},

Redux State as Architecture 169

points: {

label: 'Points',

width: '10%',

},

archive: {

width: '10%',

},

};

const Stories = ({ stories }) =>

...

The last columnwith the archive property namewill not be used yet, but will be used in a later point
in time. Second, you can pass this object to your Story component. Still the Stories component has
the object to use it later on for the column headings.

src/components/Stories.js

const Stories = ({ stories }) =>

<div className="stories">

{(stories || []).map(story =>

<Story

key={story.objectID}

story={story}

columns={COLUMNS}

/>

)}

</div>

The Story component can use it to style each displaying property of the story. It uses inline style to
define the width of each column.

src/components/Story.js

const Story = ({ story, columns }) => {

...

return (

<div className="story">

{title}

Redux State as Architecture 170

{author}

{num_comments}

{points}

</div>

);

}

Last but not least, you can use the COLUMNS object to give your Stories component matching header
columns. That’s why the COLUMNS object got defined in the Stories component in the first place.
Now, rather than doing it manually, as in the Story component, you will map over the object
dynamically to render the header columns. Since it is an object, you have to turn it into an array of
the property names first, and then access the object by its mapped keys again.

src/components/Stories.js

const Stories = ({ stories }) =>

<div className="stories">

<div className="stories-header">

{Object.keys(COLUMNS).map(key =>

<span

key={key}

style={{ width: COLUMNS[key].width }}

>

{COLUMNS[key].label}

)}

</div>

{(stories || []).map(story =>

<Story

key={story.objectID}

story={story}

columns={COLUMNS}

/>

Redux State as Architecture 171

)}

</div>

You can extract the header columns as its own StoriesHeader component to keep your component
well arranged.

src/components/Stories.js

const Stories = ({ stories }) =>

<div className="stories">

<StoriesHeader columns={COLUMNS} />

{(stories || []).map(story =>

...

)}

</div>

const StoriesHeader = ({ columns }) =>

<div className="stories-header">

{Object.keys(columns).map(key =>

<span

key={key}

style={{ width: columns[key].width }}

>

{columns[key].label}

)}

</div>

In this part, you have applied styling for your application and components. It should be in a
representable state now. You can find this part of the chapter in the GitHub repository98.

Part 4: Archive a Story

Now you will add your first functionality: archiving a story. Therefore you will have to introduce
Redux at some point to your application to manage the state of archived stories. I want to highly
emphasize that it would work in plain React too. But for the sake of learning Redux, you will already
use it at this point in time.

First, the archiving functionality can be passed down to the Story component from your React root
component. In the beginning, it can be an empty function. The function will be replaced later when
you will dispatch a Redux action.

98https://github.com/rwieruch/react-redux-hackernews/tree/6cb35b024abb59a2192c8ac0bb700046a700d470

https://github.com/rwieruch/react-redux-hackernews/tree/6cb35b024abb59a2192c8ac0bb700046a700d470
https://github.com/rwieruch/react-redux-hackernews/tree/6cb35b024abb59a2192c8ac0bb700046a700d470

Redux State as Architecture 172

src/index.js

...

ReactDOM.render(

<App stories={stories} onArchive={() => {}} />,

document.getElementById('root')

);

Second, you can pass it through your App and Stories components. These components don’t use
the function but only pass it to the Story component. You might already notice that this could be a
potential refactoring later on, because the function gets passed from the root component through a
few components only to reach a leaf component.

src/components/App.js

const App = ({ stories, onArchive }) =>

<div className="app">

<Stories

stories={stories}

onArchive={onArchive}

/>

</div>

src/components/Stories.js

const Stories = ({ stories, onArchive }) =>

<div className="stories">

<StoriesHeader columns={COLUMNS} />

{(stories || []).map(story =>

<Story

key={story.objectID}

story={story}

columns={COLUMNS}

onArchive={onArchive}

/>

)}

</div>

Finally, you can use it in your Story component in a onClick handler of a button. The story objectID
will be passed in the handler to identify the archived story.

Redux State as Architecture 173

src/components/Story.js

const Story = ({ story, columns, onArchive }) => {

const {

title,

url,

author,

num_comments,

points,

objectID,

} = story;

return (

<div className="story">

...

<button

type="button"

className="button-inline"

onClick={() => onArchive(objectID)}

>

Archive

</button>

</div>

);

}

A refactoring that you could already do would be to extract the button as a reusable component.

src/components/Story.js

const Story = ({ story, columns, onArchive }) => {

...

return (

<div className="story">

...

<ButtonInline onClick={() => onArchive(objectID)}>

Archive

</ButtonInline>

Redux State as Architecture 174

</div>

);

}

const ButtonInline = ({

onClick,

type = 'button',

children

}) =>

<button

type={type}

className="button-inline"

onClick={onClick}

>

{children}

</button>

You can make even another more abstract Button component that doesn’t share the button-inline
CSS class.

src/components/Story.js

...

const ButtonInline = ({

onClick,

type = 'button',

children

}) =>

<Button

type={type}

className="button-inline"

onClick={onClick}

>

{children}

</Button>

const Button = ({

onClick,

className,

type = 'button',

children

}) =>

Redux State as Architecture 175

<button

type={type}

className={className}

onClick={onClick}

>

{children}

</button>

Both button components should be extracted to a new file called src/components/Button.js, but
exported so that at least the ButtonInline component can be reused in the Story component. You
can find this part of the chapter in the GitHub repository99. Now, when you start your application
again, the button to archive a story is there. But it doesn’t work because it only receives a no-op
(empty function) as property from your root component. You will later on introduce a Redux action
that can be dispatched to archive a story.

Part 5: Introduce Redux: Store + First Reducer

This part will finally introduce Redux to manage the state of the (sample) stories instead of passing
it directly into your component tree. Let’s approach it step by step. First, you have to install Redux
on the command line:

Command Line

npm install --save redux

Second, in the root entry point of React, you can import the Redux store. The store is not defined
yet. Instead of using the sample stories, you will use the stories that are stored in the Redux store.
Taken that the store only saves a list of stories as state, you can simply get the root state of the store
and assume that it is the list of stories.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './components/App';

import store from './store';

import './index.css';

ReactDOM.render(

<App stories={store.getState()} onArchive={() => {}} />,

document.getElementById('root')

);

99https://github.com/rwieruch/react-redux-hackernews/tree/55de13475aa9c2424b0fc00ce95dd4c5474c0473

https://github.com/rwieruch/react-redux-hackernews/tree/55de13475aa9c2424b0fc00ce95dd4c5474c0473
https://github.com/rwieruch/react-redux-hackernews/tree/55de13475aa9c2424b0fc00ce95dd4c5474c0473

Redux State as Architecture 176

Third, you have to create your Redux store instance in a separate file. It already takes a reducer that
is not implemented yet. You will implement it in the next step.

src/store/index.js

import { createStore } from 'redux';

import storyReducer from '../reducers/story';

const store = createStore(

storyReducer

);

export default store;

Fourth, in your src/reducers/ folder you can create your first reducer: storyReducer. It can have the
sample stories as initial state.

src/reducers/story.js

const INITIAL_STATE = [

{

title: 'React',

url: 'https://facebook.github.io/react/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

}, {

title: 'Redux',

url: 'https://github.com/reactjs/redux',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

function storyReducer(state = INITIAL_STATE, action) {

switch(action.type) {

default : return state;

}

}

export default storyReducer;

Redux State as Architecture 177

Your application should work when you start it. It is using the state from the Redux store that
is initialized in the storyReducer, because it is the only reducer in your application. There are no
actions yet and no action is captured in the reducer yet. Even though there was no action dispatched,
you can see that the Redux store runs through all its defined reducers to initialize its initial state in the
store. The state gets visible through the Stories and Story components, because it is passed down
from the React root entry point. You can find this part of the chapter in the GitHub repository100.

Part 6: Two Reducers

You have used the Redux store and a reducer to define an initial state of sample stories and to
retrieve this state for your component tree. But there is no state manipulation happening yet. In
the following parts you are going to implement the archive functionality. When approaching this
functionality, the simplest thing to do would be to remove the archived story from the list of stories
in the storyReducer. But let’s approach this from a different angle to have a greater impact in the
long run. It could still be useful to have all stories in the end, but have a way to distinguish between
them: stories and archived stories. Following this way, you would be able in the future to have a
second component that shows the archived stories next to the available stories.

From an implementation point of view, the storyReducer will stay as it is for now. But you can
introduce a second reducer, a archiveReducer, that keeps a list of references to the archived stories.

src/reducers/archive.js

const INITIAL_STATE = [];

function archiveReducer(state = INITIAL_STATE, action) {

switch(action.type) {

default : return state;

}

}

export default archiveReducer;

Youwill implement the action to archive a story in a second. First, the Redux store in its instantiation
needs to get both reducers now. It has to get the combined reducer. Let’s pretend that the store can
import the combined reducer from the entry file, the reducers/index.js, without worrying about the
combining of the reducers yet.

100https://github.com/rwieruch/react-redux-hackernews/tree/5aafb21595541c21db778ad8825c97403e44b963

https://github.com/rwieruch/react-redux-hackernews/tree/5aafb21595541c21db778ad8825c97403e44b963
https://github.com/rwieruch/react-redux-hackernews/tree/5aafb21595541c21db778ad8825c97403e44b963

Redux State as Architecture 178

src/store/index.js

import { createStore } from 'redux';

import rootReducer from '../reducers';

const store = createStore(

rootReducer

);

export default store;

Next you can combine both reducers in the file that is used by the Redux store to import the
rootReducer.

src/reducers/index.js

import { combineReducers } from 'redux';

import storyReducer from './story';

import archiveReducer from './archive';

const rootReducer = combineReducers({

storyState: storyReducer,

archiveState: archiveReducer,

});

export default rootReducer;

Since your state is sliced up into two substates now, you have to adjust how you retrieve the stories
from your store with the intermediate storyState. This is a crucial step, because it shows how a
combined reducer slices up your state into substates.

src/index.js

ReactDOM.render(

<App

stories={store.getState().storyState}

onArchive={() => {}}

/>,

document.getElementById('root')

);

Redux State as Architecture 179

The application should show up the same stories as before when you start it. You can find this part
of the chapter in the GitHub repository101. However, there is still no state manipulation happening,
because no actions are involved yet. Finally in the next part you will dispatch your first action to
archive a story.

Part 7: First Action

In this part, you will dispatch your first action to archive a story. The archive action needs to be
captured in the new archiveReducer. It simply stores all archived stories by their id in a list. There
is no need to duplicate the story entity, because you want to keep the law of a single source of truth.
The initial state is an empty list, because no story is archived in the beginning. When archiving
a story, all the previous ids in the state and the new archived id will be used in a new array. The
JavaScript spread operator is used here.

src/reducers/archive.js

import { STORY_ARCHIVE } from '../constants/actionTypes';

const INITIAL_STATE = [];

const applyArchiveStory = (state, action) =>

[...state, action.id];

function archiveReducer(state = INITIAL_STATE, action) {

switch(action.type) {

case STORY_ARCHIVE : {

return applyArchiveStory(state, action);

}

default : return state;

}

}

export default archiveReducer;

The action type is already outsourced in a different file. This way it can be reused when dispatching
the action from the Redux store.

101https://github.com/rwieruch/react-redux-hackernews/tree/f6d436fdfdab19296e473fbe7243690e830c1c2b

https://github.com/rwieruch/react-redux-hackernews/tree/f6d436fdfdab19296e473fbe7243690e830c1c2b
https://github.com/rwieruch/react-redux-hackernews/tree/f6d436fdfdab19296e473fbe7243690e830c1c2b

Redux State as Architecture 180

src/constants/actionTypes.js

export const STORY_ARCHIVE = 'STORY_ARCHIVE';

Last but not least, you can import the action type and dispatch the action in your root component
where you had the empty function before.

src/reducers/archive.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './components/App';

import store from './store';

import { STORY_ARCHIVE } from './constants/actionTypes';

import './index.css';

ReactDOM.render(

<App

stories={store.getState().storyState}

onArchive={id => store.dispatch({ type: STORY_ARCHIVE, id })}

/>,

document.getElementById('root')

);

Now you dispatch the action directly without an action creator. You can find this part of the chapter
in the GitHub repository102. When you start your application, it should still work, but nothing
happens when you archive a story. The archived stories are not yet evaluated in the component tree.
The stories prop that is passed to the App component still uses all the stories from the storyState.

Part 8: First Selector

You can use both substates, storyState and archiveState to derive the list of stories that are not
archived. The deriving of those properties can happen in a selector. You can create your first selector
that only returns the part of the stories that is not archived. The archiveState is the list of archived
ids.

102https://github.com/rwieruch/react-redux-hackernews/tree/5ddbcc2fa8269d615763770a49e7675c5f02d173

https://github.com/rwieruch/react-redux-hackernews/tree/5ddbcc2fa8269d615763770a49e7675c5f02d173
https://github.com/rwieruch/react-redux-hackernews/tree/5ddbcc2fa8269d615763770a49e7675c5f02d173

Redux State as Architecture 181

src/selectors/story.js

const isNotArchived = archivedIds => story =>

archivedIds.indexOf(story.objectID) === -1;

const getReadableStories = ({ storyState, archiveState }) =>

storyState.filter(isNotArchived(archiveState));

export {

getReadableStories,

};

The selector makes heavily use of JavaScript ES6 arrow functions, JavaScript ES6 destructuring and a
higher order function: isNotArchived(). If you are not used to JavaScript ES6, don’t feel intimidated
by it. It is only a way to express these functions more concise. In plain JavaScript ES5 it would look
like the following:

src/selectors/story.js

function isNotArchived(archivedIds) {

return function (story) {

return archivedIds.indexOf(story.objectID) === -1;

};

}

function getReadableStories({ storyState, archiveState }) {

return storyState.filter(isNotArchived(archiveState));

}

export {

getReadableStories,

};

Last but not least, you can use the selector to compute the not archived stories instead of retrieving
the whole list of stories from the store directly.

Redux State as Architecture 182

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './components/App';

import store from './store';

import { getReadableStories } from './selectors/story';

import { STORY_ARCHIVE } from './constants/actionTypes';

import './index.css';

ReactDOM.render(

<App

stories={getReadableStories(store.getState())}

onArchive={id => store.dispatch({ type: STORY_ARCHIVE, id })}

/>,

document.getElementById('root')

);

You can find this part of the chapter in the GitHub repository103. When you start your application,
nothing happens again when you archive a story. Even though you are using the readable stories
now. That’s because there is no re-rendering of the view in place to update it.

Part 9: Re-render View

In this part, you will update the view layer to reflect the correct state that is used from the Redux
store. When an action dispatches, the state in the Redux store gets updated. However, the component
tree in React doesn’t update, because no one subscribed to the Redux store yet. In the first attempt,
you are going to wire up Redux and React naively and re-render the whole component tree on each
update.

src/index.js

...

function render() {

ReactDOM.render(

<App

stories={getReadableStories(store.getState())}

onArchive={id => store.dispatch({ type: STORY_ARCHIVE, id })}

/>,

document.getElementById('root')

103https://github.com/rwieruch/react-redux-hackernews/tree/5e3338d3ffff924b7a12eccb691365fd11cb5aed

https://github.com/rwieruch/react-redux-hackernews/tree/5e3338d3ffff924b7a12eccb691365fd11cb5aed
https://github.com/rwieruch/react-redux-hackernews/tree/5e3338d3ffff924b7a12eccb691365fd11cb5aed

Redux State as Architecture 183

);

}

store.subscribe(render);

render();

Now the components will re-render once you archive a story, because the state in the Redux
store updates and the subscription will run to render again the whole component tree. In addition,
you render the component only once when the application starts. Congratulations, you dispatched
your first action, selected derived properties from the state and updated your component tree by
subscribing it to the Redux store. That took longer as expected, didn’t it? However, now most of the
Redux and React infrastructure is in place to be more efficient when introducing new features. You
can find this part of the chapter in the GitHub repository104.

Part 10: First Middleware

In this part, you will introduce your first middleware to the Redux store. In a scaling application it
becomes often a problem to track state updates. Often you don’t notice when an action is dispatched,
because too many actions get involved and a bunch of themmight get triggered implicitly. Therefore
you can use the redux-logger105 middleware in your Redux store to console.log() every action, the
previous state and the next state, automatically to your developers console when dispatching an
action. First, you have to install the neat middleware library.

Command Line

npm install --save redux-logger

Second, you can use it as middleware in your Redux store initialization.

src/store/index.js

import { createStore, applyMiddleware } from 'redux';

import { createLogger } from 'redux-logger';

import rootReducer from '../reducers';

const logger = createLogger();

const store = createStore(

rootReducer,

undefined,

104https://github.com/rwieruch/react-redux-hackernews/tree/286c04354fcab639ebd60ac2430ad939ce107365
105https://github.com/evgenyrodionov/redux-logger

https://github.com/rwieruch/react-redux-hackernews/tree/286c04354fcab639ebd60ac2430ad939ce107365
https://github.com/evgenyrodionov/redux-logger
https://github.com/rwieruch/react-redux-hackernews/tree/286c04354fcab639ebd60ac2430ad939ce107365
https://github.com/evgenyrodionov/redux-logger

Redux State as Architecture 184

applyMiddleware(logger)

);

export default store;

That’s it. Every time you dispatch an action now, for instance when archiving a story, you will see
the logging in the developer console in your browser. You can find this part of the chapter in the
GitHub repository106.

Part 11: First Action Creator

The action you are dispatching is a plain action object. However, you might want to reuse it in a later
point in time. Action creators are not mandatory, but they keep your Redux architecture organized.
In order to stay organized, let’s define your first action creator. First, you have to define the action
creator that takes a story id, to identify the archiving story, in a new file.

src/actions/archive.js

import { STORY_ARCHIVE } from '../constants/actionTypes';

const doArchiveStory = id => ({

type: STORY_ARCHIVE,

id,

});

export {

doArchiveStory,

};

Second, you can use it in your root component. Instead of dispatching the action object directly, you
can create an action by using its action creator.

106https://github.com/rwieruch/react-redux-hackernews/tree/652e6419e2a872ba2d1dd65465006b13f0799c4f

https://github.com/rwieruch/react-redux-hackernews/tree/652e6419e2a872ba2d1dd65465006b13f0799c4f
https://github.com/rwieruch/react-redux-hackernews/tree/652e6419e2a872ba2d1dd65465006b13f0799c4f
https://github.com/rwieruch/react-redux-hackernews/tree/652e6419e2a872ba2d1dd65465006b13f0799c4f

Redux State as Architecture 185

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './components/App';

import store from './store';

import { getReadableStories } from './selectors/story';

import { doArchiveStory } from './actions/archive';

import './index.css';

function render() {

ReactDOM.render(

<App

stories={getReadableStories(store.getState())}

onArchive={id => store.dispatch(doArchiveStory(id))}

/>,

document.getElementById('root')

);

}

...

The application should operate as before when you start it. But this time you have used an action
creator rather than dispatching an action object directly. You can find this part of the chapter in the
GitHub repository107.

Part 12: Connect React with Redux

In this part, you will connect React and Redux in a more sophisticated way. The whole component
tree re-renders everytime when the state changes now. However, you might want to wire up
components independently with the Redux store. In addition, you don’t want to re-render the whole
component tree, but only the components where the state or props have changed. Let’s change this
by using the react-redux108 library that connects both worlds.

Command Line

npm install --save react-redux

You can use the Provider component, which makes the Redux store available to all components
below, in your React root entry point.

107https://github.com/rwieruch/react-redux-hackernews/tree/4cc5e995d63fd935a2e335b0a4946a1811c04202
108https://github.com/reactjs/react-redux

https://github.com/rwieruch/react-redux-hackernews/tree/4cc5e995d63fd935a2e335b0a4946a1811c04202
https://github.com/rwieruch/react-redux-hackernews/tree/4cc5e995d63fd935a2e335b0a4946a1811c04202
https://github.com/reactjs/react-redux
https://github.com/rwieruch/react-redux-hackernews/tree/4cc5e995d63fd935a2e335b0a4946a1811c04202
https://github.com/reactjs/react-redux

Redux State as Architecture 186

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { Provider } from 'react-redux';

import App from './components/App';

import store from './store';

import './index.css';

ReactDOM.render(

<Provider store={store}>

<App />

</Provider>,

document.getElementById('root')

);

Notice that the render method isn’t used in a Redux store subscription anymore. No one subscribes
to the Redux store and the App component isn’t receiving any props. In addition, the App component
is only rendering a component and doesn’t pass any props.

src/components/App.js

import React from 'react';

import './App.css';

import Stories from './Stories';

const App = () =>

<div className="app">

<Stories />

</div>

export default App;

But who gives the props to the Stories component then? This component is the first component
that needs to know about the list of stories, because it has to display it. The solution is to upgrade the
Stories component to a connected component. It should be connected to the state layer. So, instead
of only exporting the plain Stories component:

Redux State as Architecture 187

src/components/Stories.js

...

export default Stories;

You can export the connected component that has access to the Redux store:

src/components/Stories.js

import { connect } from 'react-redux';

import { doArchiveStory } from '../actions/archive';

import { getReadableStories } from '../selectors/story';

...

const mapStateToProps = state => ({

stories: getReadableStories(state),

});

const mapDispatchToProps = dispatch => ({

onArchive: id => dispatch(doArchiveStory(id)),

});

export default connect(

mapStateToProps,

mapDispatchToProps

)(Stories);

The Stories component is a connected component now and is the only component that has access
to the Redux store. It receives the stories from the state in mapStateToProps() and a function that
triggers the dispatching of an action to archive a story in mapDispatchToProps(). The application
should work again, but this time with a sophisticated connection between Redux and React. You can
find this part of the chapter in the GitHub repository109.

Part 13: Lift Connection

It is no official term yet, but you can lift the connection between React and Redux. For instance,
you could lift the connection from the Stories component to another component. But you need the
list of stories to map over them in the Stories component. However, what about the onArchive()

109https://github.com/rwieruch/react-redux-hackernews/tree/88072e9b62230f59ffa83a5ddd06ceda6bf75fe4

https://github.com/rwieruch/react-redux-hackernews/tree/88072e9b62230f59ffa83a5ddd06ceda6bf75fe4
https://github.com/rwieruch/react-redux-hackernews/tree/88072e9b62230f59ffa83a5ddd06ceda6bf75fe4

Redux State as Architecture 188

function? It is not used in the Stories component, but only in the Story component and only passed
via the Stories component. Thus you could lift the connection partly. The stories would stay in
the Stories component, but the onArchive() function could live in the Story component.

First, you remove the onArchive() function for the Stories component and remove the mapDis-

patchToProps() as well. It will be used later on in the Story component.

src/components/Stories.js

...

const Stories = ({ stories }) =>

<div className="stories">

<StoriesHeader columns={COLUMNS} />

{(stories || []).map(story =>

<Story

key={story.objectID}

story={story}

columns={COLUMNS}

/>

)}

</div>

...

const mapStateToProps = state => ({

stories: getReadableStories(state),

});

export default connect(

mapStateToProps

)(Stories);

Now you can connect the Story component instead. You would have two connected components
afterward.

Redux State as Architecture 189

src/components/Story.js

import { connect } from 'react-redux';

import { doArchiveStory } from '../actions/archive';

...

const mapDispatchToProps = dispatch => ({

onArchive: id => dispatch(doArchiveStory(id)),

});

export default connect(

null,

mapDispatchToProps

)(Story);

With this refactoring step in your mind, you can always lift your connections to the Redux store
from your view layer depending on the needs of the components. Does the component need state
from the Redux store? Does the component need to alter the state in the Redux store via dispatching
an action? You are in full control of where you want to use connected components and where you
want to keep your components as presenter components. You can find this part of the chapter in the
GitHub repository110.

Part 14: Interacting with an API

Implementing applications with sample data can be dull. It can be more exciting to interact with
a real API - in this case the Hacker News API111. Even though, as you have learned, you can
have asynchronous actions without any asynchronous action library, this application will introduce
Redux Saga as asynchronous action library to deal with side-effects such as fetching data from a
third-party platform.

Command Line: /

npm install --save redux-saga

First, you can introduce a root saga in your entry point file to sagas. It can be similar seen to the
combined root reducer, because in the end the Redux store expects one saga for its creation. Basically
the root saga watches all saga triggering actions by using effects such as takeEvery().

110https://github.com/rwieruch/react-redux-hackernews/tree/779d52fc85ecfbaf5a821cbbae384aac962e76a7
111https://hn.algolia.com/api

https://github.com/rwieruch/react-redux-hackernews/tree/779d52fc85ecfbaf5a821cbbae384aac962e76a7
https://github.com/rwieruch/react-redux-hackernews/tree/779d52fc85ecfbaf5a821cbbae384aac962e76a7
https://hn.algolia.com/api
https://github.com/rwieruch/react-redux-hackernews/tree/779d52fc85ecfbaf5a821cbbae384aac962e76a7
https://hn.algolia.com/api

Redux State as Architecture 190

src/sagas/index.js

import { takeEvery, all } from 'redux-saga/effects';

import { STORIES_FETCH } from '../constants/actionTypes';

import { handleFetchStories } from './story';

function *watchAll() {

yield all([

takeEvery(STORIES_FETCH, handleFetchStories),

])

}

export default watchAll;

Second, the root saga can be used in the Redux store middleware when initializing the saga
middleware. It is used in the middleware, but also needs to be run in a saga.run() method.

src/store/index.js

import { createStore, applyMiddleware } from 'redux';

import { createLogger } from 'redux-logger';

import createSagaMiddleware from 'redux-saga';

import rootReducer from '../reducers';

import rootSaga from '../sagas';

const logger = createLogger();

const saga = createSagaMiddleware();

const store = createStore(

rootReducer,

undefined,

applyMiddleware(saga, logger)

);

saga.run(rootSaga);

export default store;

Third, you can introduce the new action type in your constants that will trigger the saga. However,
you can already introduce a second action type that will later on - when the request succeeds - add
the stories in your storyReducer to the Redux store. Basically you have one action to trigger the
side-effect that is handled with Redux Saga and one action that stores the result of the side-effect in
the Redux store.

Redux State as Architecture 191

src/constants/actionTypes.js

export const STORY_ARCHIVE = 'STORY_ARCHIVE';

export const STORIES_FETCH = 'STORIES_FETCH';

export const STORIES_ADD = 'STORIES_ADD';

Fourth, you can implement the story saga that encapsulates the API request. It uses the native fetch
API of the browser ti retrieve the stories from the Hacker News endpoint. In your handleFetchSto-
ries() generator function, that is used in your too saga, you can use the yield statement to write
asynchronous code as it would be synchronous code. As long as the promise from the Hacker News
request doesn’t resolve, the next line of code after the yield state will not be evaluated. When you
finally have the result from the API request, you can use the put() effect to dispatch an action.

src/sagas/story.js

import { call, put } from 'redux-saga/effects';

import { doAddStories } from '../actions/story';

const HN_BASE_URL = 'http://hn.algolia.com/api/v1/search?query=';

const fetchStories = query =>

fetch(HN_BASE_URL + query)

.then(response => response.json());

function* handleFetchStories(action) {

const { query } = action;

const result = yield call(fetchStories, query);

yield put(doAddStories(result.hits));

}

export {

handleFetchStories,

};

In the fifth step, you need to define both actions creators: the first one that triggers the side-effect to
fetch stories by a search term and the second one that adds the fetched stories to your Redux store.

Redux State as Architecture 192

src/actions/story.js

import {

STORIES_ADD,

STORIES_FETCH,

} from '../constants/actionTypes';

const doAddStories = stories => ({

type: STORIES_ADD,

stories,

});

const doFetchStories = query => ({

type: STORIES_FETCH,

query,

});

export {

doAddStories,

doFetchStories,

};

Only the second action needs to be intercepted in your storyReducer to store the stories. The first
action is only used to trigger the saga in your root saga. Don’t forget to remove the sample stories
in your reducers.

src/reducers/story.js

import { STORIES_ADD } from '../constants/actionTypes';

const INITIAL_STATE = [];

const applyAddStories = (state, action) =>

action.stories;

function storyReducer(state = INITIAL_STATE, action) {

switch(action.type) {

case STORIES_ADD : {

return applyAddStories(state, action);

}

default : return state;

}

}

Redux State as Architecture 193

export default storyReducer;

Now, everything is setup from a Redux and Redux Saga perspective. As last step, only one component
from the view layer needs to trigger the STORIES_FETCH action. This action is intercepted in the saga,
fetches the stories in a side-effect, and stores them in the Redux store with the STORIES_ADD action.
Therefore, in your App component, you can introduce the new SearchStories component.

src/components/App.js

import React from 'react';

import './App.css';

import Stories from './Stories';

import SearchStories from './SearchStories';

const App = () =>

<div className="app">

<div className="interactions">

<SearchStories />

</div>

<Stories />

</div>

export default App;

The SearchStories component will be a connected component. The next step is to implement that
component. First, you start with a plain React component that has a form, input field and button.

src/components/SearchStories.js

import React, { Component } from 'react';

import Button from './Button';

class SearchStories extends Component {

constructor(props) {

super(props);

this.state = {

query: '',

};

}

Redux State as Architecture 194

render() {

return (

<form onSubmit={this.onSubmit}>

<input

type="text"

value={this.state.query}

onChange={this.onChange}

/>

<Button type="submit">

Search

</Button>

</form>

);

}

}

export default SearchStories;

There are two missing class methods: onChange() and onSubmit(). Let’s introduce them to make
the component complete.

src/components/SearchStories.js

...

const applyQueryState = query => () => ({

query

});

class SearchStories extends Component {

constructor(props) {

...

this.onChange = this.onChange.bind(this);

this.onSubmit = this.onSubmit.bind(this);

}

onSubmit(event) {

const { query } = this.state;

if (query) {

this.props.onFetchStories(query)

this.setState(applyQueryState(''));

Redux State as Architecture 195

}

event.preventDefault();

}

onChange(event) {

const { value } = event.target;

this.setState(applyQueryState(value));

}

render() {

...

}

}

export default SearchStories;

The component should work on its own now. It only receives one function from the outside via its
props: onFetchStories(). This function will dispatch an action to trigger the saga that fetches the
stories from the Hacker News platform. You would have to connect the SearchStories component
to make the dispatch functionality available.

src/components/SearchStories.js

import React, { Component } from 'react';

import { connect } from 'react-redux';

import { doFetchStories } from '../actions/story';

import Button from './Button';

...

const mapDispatchToProps = (dispatch) => ({

onFetchStories: query => dispatch(doFetchStories(query)),

});

export default connect(

null,

mapDispatchToProps

)(SearchStories);

Start your application again and try to search for stories such as “React” or “Redux”. It should work
now. The connect component dispatches an action that triggers the saga. The side-effect of the

Redux State as Architecture 196

saga is the fetching process of the stories by search term from the Hacker News API. Once the
request succeeds, another action gets dispatched and captured in the storyReducer to finally store
the stories. You can find this part of the chapter in the GitHub repository112.

Part 15: Separation of API

There is one refactoring step that you could apply. It would improve the separation between API
functionalities and sagas. You would extract the API call from the story saga into an own API folder.
Afterward, other sagas could make use of these API requests too. First, extract the functionality from
the saga and instead import it.

src/sagas/story.js
import { call, put } from 'redux-saga/effects';

import { doAddStories } from '../actions/story';

import { fetchStories } from '../api/story';

function* handleFetchStories(action) {

const { query } = action;

const result = yield call(fetchStories, query);

yield put(doAddStories(result.hits));

}

export {

handleFetchStories,

};

And second, use it in an own dedicated API file.

src/api/story.js
const HN_BASE_URL = 'http://hn.algolia.com/api/v1/search?query=';

const fetchStories = query =>

fetch(HN_BASE_URL + query)

.then(response => response.json());

export {

fetchStories,

};

Great, you have separated the API functionality from the saga. You can find this part of the chapter
in the GitHub repository113.

112https://github.com/rwieruch/react-redux-hackernews/tree/94efe051bd639aeedce402a33af5acb20397f9f2
113https://github.com/rwieruch/react-redux-hackernews/tree/b6a6e59af71613471a50c9366c4c4e107e00b66f

https://github.com/rwieruch/react-redux-hackernews/tree/94efe051bd639aeedce402a33af5acb20397f9f2
https://github.com/rwieruch/react-redux-hackernews/tree/b6a6e59af71613471a50c9366c4c4e107e00b66f
https://github.com/rwieruch/react-redux-hackernews/tree/94efe051bd639aeedce402a33af5acb20397f9f2
https://github.com/rwieruch/react-redux-hackernews/tree/b6a6e59af71613471a50c9366c4c4e107e00b66f

Redux State as Architecture 197

Part 16: Error Handling

So far, you are making a request to the Hacker News API and display the retrieved stories in your
React components. But what happens when an error occurs? Nothing will show up when you search
for stories. In order to give your end-user a great user experience, you could add error handling to
your application. Let’s do it by introducing an action that could allocate an error state in the Redux
store.

src/constants/actionTypes.js

export const STORY_ARCHIVE = 'STORY_ARCHIVE';

export const STORIES_FETCH = 'STORIES_FETCH';

export const STORIES_FETCH_ERROR = 'STORIES_FETCH_ERROR';

export const STORIES_ADD = 'STORIES_ADD';

In the second step, you would need an action creator that keeps an error object in its payload and
can be caught in a reducer later on.

src/actions/story.js

import {

STORIES_ADD,

STORIES_FETCH,

STORIES_FETCH_ERROR,

} from '../constants/actionTypes';

...

const doFetchErrorStories = error => ({

type: STORIES_FETCH_ERROR,

error,

});

export {

doAddStories,

doFetchStories,

doFetchErrorStories,

};

The action can be triggered now in your story saga. Redux Saga uses try and catch statements for
error handling. Every time you would get an error in your try block, you would end up in the catch
block to do something with the error object. In this case, you can dispatch your new action to save
an error state in your Redux store.

Redux State as Architecture 198

src/sagas/story.js

import { call, put } from 'redux-saga/effects';

import { doAddStories, doFetchErrorStories } from '../actions/story';

import { fetchStories } from '../api/story';

function* handleFetchStories(action) {

const { query } = action;

try {

const result = yield call(fetchStories, query);

yield put(doAddStories(result.hits));

} catch (error) {

yield put(doFetchErrorStories(error));

}

}

export {

handleFetchStories,

};

Last but not least, a reducer needs to deal with the new action type. The best place to keep it would
be next to the stories. The story reducer keeps only a list of stories so far, but you could change it to
manage a complex object that holds the list of stories and an error object.

src/reducers/story.js

import { STORIES_ADD } from '../constants/actionTypes';

const INITIAL_STATE = {

stories: [],

error: null,

};

const applyAddStories = (state, action) => ({

stories: action.stories,

error: null,

});

function storyReducer(state = INITIAL_STATE, action) {

switch(action.type) {

case STORIES_ADD : {

return applyAddStories(state, action);

Redux State as Architecture 199

}

default : return state;

}

}

export default storyReducer;

Now you could introduce the second action type in the reducer. It would allocate the error object in
the state but keeps the list of stories empty.

src/reducers/story.js

import {

STORIES_ADD,

STORIES_FETCH_ERROR,

} from '../constants/actionTypes';

...

const applyFetchErrorStories = (state, action) => ({

stories: [],

error: action.error,

});

function storyReducer(state = INITIAL_STATE, action) {

switch(action.type) {

case STORIES_ADD : {

return applyAddStories(state, action);

}

case STORIES_FETCH_ERROR : {

return applyFetchErrorStories(state, action);

}

default : return state;

}

}

export default storyReducer;

In your story selector, you would have to change the structure of the story state. The story state
isn’t anymore a mere list of stories but a complex object with a list of stories and an error object.
In addition, you could add a second selector to select the error object. It will be used later on in a
component.

Redux State as Architecture 200

src/selectors/story.js

...

const getReadableStories = ({ storyState, archiveState }) =>

storyState.stories.filter(isNotArchived(archiveState));

const getFetchError = ({ storyState }) =>

storyState.error;

export {

getReadableStories,

getFetchError,

};

Last but not least, in your component you could retrieve the error object in your connect higher
order component and display with React’s conditional rendering114 an error message when an error
occurs.

src/components/Stories.js

...

import {

getReadableStories,

getFetchError,

} from '../selectors/story';

...

const Stories = ({ stories, error }) =>

<div className="stories">

<StoriesHeader columns={COLUMNS} />

{ error && <p className="error">Something went wrong ...</p> }

{(stories || []).map(story =>

...

)}

</div>

...

114https://www.robinwieruch.de/conditional-rendering-react/

https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/

Redux State as Architecture 201

const mapStateToProps = state => ({

stories: getReadableStories(state),

error: getFetchError(state),

});

...

In your browser in the developer console, you can simulate being offline. You can try it and see that
an error message shows up when searching for stories. When you go online again and search for
stories, the error message should disappear. Instead a list of stories displays again. You can find this
part of the chapter in the GitHub repository115.

Part 17: Testing

Every application in production should be tested. Therefore, the next step could be to add a couple
of tests to your application. The chapter will only cover a handful of tests to demonstrate testing in
Redux. You could add more of them on your own. In addition, the chapter will not test your view
layer.

Since you have bootstrapped your application with create-react-app, it already comes with Jest116

to test your application. You can give a filename the prefix test to include it in your test suite. Once
you run npm test on the command line, all included tests will get executed. The following files were
not created for you, thus you would have to create them on your own.

First, let’s create a test file for the story reducer. As you have learned, a reducer gets a previous state
and an action as input and returns a new state. It is a pure function and thus it should be simple to
test because it has no side-effects.

src/reducers/story.test.js

import storyReducer from './story';

describe('story reducer', () => {

it('adds stories to the story state', () => {

const stories = ['a', 'b', 'c'];

const action = {

type: 'STORIES_ADD',

stories,

};

115https://github.com/rwieruch/react-redux-hackernews/tree/a1f6a885357a891b5e94ade90728a1f2d3d1dbb9
116https://facebook.github.io/jest/

https://github.com/rwieruch/react-redux-hackernews/tree/a1f6a885357a891b5e94ade90728a1f2d3d1dbb9
https://facebook.github.io/jest/
https://github.com/rwieruch/react-redux-hackernews/tree/a1f6a885357a891b5e94ade90728a1f2d3d1dbb9
https://facebook.github.io/jest/

Redux State as Architecture 202

const previousState = { stories: [], error: null };

const expectedNewState = { stories, error: null };

const newState = storyReducer(previousState, action);

expect(newState).toEqual(expectedNewState);;

});

});

Basically you created the necessary inputs for your reducer and the expected output. Then you can
compare both in your expectation. It depends on your test philosophy whether you create the action
hard coded in the file or import your action creator that you already have in your application. In
this case, a hard coded action was used.

In order to verify that your previous state isn’t mutated when creating the new state, because Redux
embraces immutable data structures, you could use a neat helper library that freezes your state.

Command Line: /

npm install --save-dev deep-freeze

It can be used to freeze the previous state.

src/reducers/story.test.js

import deepFreeze from 'deep-freeze';

import storyReducer from './story';

describe('story reducer', () => {

it('adds stories to the story state', () => {

const stories = ['a', 'b', 'c'];

const action = {

type: 'STORIES_ADD',

stories,

};

const previousState = { stories: [], error: null };

const expectedNewState = { stories, error: null };

deepFreeze(previousState);

const newState = storyReducer(previousState, action);

Redux State as Architecture 203

expect(newState).toEqual(expectedNewState);;

});

});

Now every time you would mutate accidentally your previous state an error would show up. It is up
to you to add two more tests for the story reducer. One test could verify that an error object is set
when an error occurs and another test that verifies that the error object is set to null when stories
are successfully added to the state.

Second, you can add a test for your selectors. Let’s demonstrate it with your story selector. Since
the selector function is a pure function again, you can easily test it with an input and an expected
output. You would have to define your global state and use the selector the retrieve an expected
substate.

src/selectors/story.test.js

import { getReadableStories } from './story';

describe('story selector', () => {

it('retrieves readable stories', () => {

const storyState = {

error: null,

stories: [

{ objectID: '1', title: 'foo' },

{ objectID: '2', title: 'bar' },

],

};

const archiveState = ['1'];

const state = { storyState, archiveState }

const expectedReadableStories = [{ objectID: '2', title: 'bar' }];

const readableStories = getReadableStories(state);

expect(readableStories).toEqual(expectedReadableStories);;

});

});

That’s it. Your Redux state is a combination of the storyState and the archiveState. When both
are defined, you already have your global state. The selector is used to retrieve a substate from the
global state. Thus you would only have to check if all the readable stories that were not archived
are retrieved by the selector.

Third, you can add a test for your action creators. An action creator only gets a payload and returns
an action object. The expected action object can be tested.

Redux State as Architecture 204

src/actions/story.test.js

import { doAddStories } from './story';

describe('story action', () => {

it('adds stories', () => {

const stories = ['a', 'b'];

const expectedAction = {

type: 'STORIES_ADD',

stories,

};

const action = doAddStories(stories);

expect(action).toEqual(expectedAction);;

});

});

As you can see, testing reducers, selectors and action creators follows always a similar pattern. Due
to the functions being pure functions, you can focus on the input and output of these functions. In
the previous examples all three test cases were strictly decoupled. However, you could also decide
to import your action creator in your reducer test avoid creating a hard coded action. You can find
this part of the chapter in the GitHub repository117.

Final Words

Implementing this application could go on infinitely. I would have plenty of features in my head that
I would want to add to it. What about you? Can you imagine to continue building this application?
From a technical perspective, things that were taught in this book, everything is set up to give you
the perfect starting point. However, there were more topics in this book that you could apply. For
instance, you could normalize your incoming stories from the API before they reach the Redux store.
The following list should give you an idea about potential next steps:

• Normalize: The data that comes from the Hacker News API could be normalized before it
reaches the reducer and finally the Redux store. You could use the normalizr library that
was introduced earlier in the book. It might be not necessary yet to normalize your state,
but in a growing application you would normalize your data eventually. The data would be
normalized between fetching the data and sending it via an action creator to the reducers.

117https://github.com/rwieruch/react-redux-hackernews/tree/d1fcb31b7a1b1602069718941844d08c21583607

https://github.com/rwieruch/react-redux-hackernews/tree/d1fcb31b7a1b1602069718941844d08c21583607
https://github.com/rwieruch/react-redux-hackernews/tree/d1fcb31b7a1b1602069718941844d08c21583607

Redux State as Architecture 205

• Local State: So far you have only used Redux. But what about mixing local state into the
application? Could you imagine an use case for it? For instance, you would be able to
distinguish between readable and archived stories in your application. There could be a
toggle, that is true or false in your Stories component as local state, that decides whether
the component shows readable or archived stories. Depending on the toggle in your view
layer, you would retrieve either readable or archived stories via selectors from your Redux
store and display them.

• React Router: Similar to the previous step, using a toggle to show archived and readable stories,
you could add a view layer Router to display these different stories on two routes. It could be
React Router when using React as your view layer. All of this is possible, because fortunately
you don’t delete stories when archiving them from your Redux store, but keep a list of archived
stories in a separate substate.

• Paginated Data: The response from the Hacker News API doesn’t only return the list of stories.
It returns a paginated list of stories with a page property. You could use the page property to
fetchmore stories with the same search term. The list component in React could be a paginated
list118 or infinite scroll list119.

• Caching: You could cache the incoming data from the Hacker News API in your Redux store.
It could be cached by search term. When you search for a search term twice, the Redux store
could be used, when a result by search term is already in place. Otherwise a request to the
Hacker News API would be made. In the Road to learn React120 readers create a cache in
React’s local state. However, the same can be done in a Redux store.

• Local Storage: You already keep track of your archived stories in the Redux store. You could
introduce the native local storage of the browser, as you have seen in the plain React chapters,
to keep this state persistent. When a user loads the application, there could be a lookup in the
local storage for archived stories. If there are archived stories, they could be rehydrated into
the Redux store. When a story gets archived, it would be dehydrated into the local storage too.
That way you would keep the list of archived stories in your Redux store and local storage in
sync, but would add a persistent layer to it when an user closes your application and comes
back later to it.

As you can see, there are a multitude of features you could implement or techniques you could make
use of. Be curious and apply these on your own. After you come up with your own implementations,
I am keen to see them. Feel free to reach out to me on Twitter121.

118https://www.robinwieruch.de/react-paginated-list/
119https://www.robinwieruch.de/react-infinite-scroll/
120https://www.robinwieruch.de/the-road-to-learn-react/
121https://twitter.com/rwieruch

https://www.robinwieruch.de/react-paginated-list/
https://www.robinwieruch.de/react-paginated-list/
https://www.robinwieruch.de/react-infinite-scroll/
https://www.robinwieruch.de/the-road-to-learn-react/
https://twitter.com/rwieruch
https://www.robinwieruch.de/react-paginated-list/
https://www.robinwieruch.de/react-infinite-scroll/
https://www.robinwieruch.de/the-road-to-learn-react/
https://twitter.com/rwieruch

Redux Ecosystem Outline
After learning the basics and advanced techniques in Redux and applying them on your own in an
application, you are ready to explore the Redux ecosystem. The Redux ecosystem is huge and cannot
be covered in one book. However, this chapter attempts to outline different paths you can take to
explore the world of Redux. Apart from outlining these different paths, a couple of topics will be
revisited as well to give you a richer toolset when using Redux.

Before you are left alone with the last chapter covering Redux, I want to make you aware of this
repository122 by Mark Erikson. It is a categorized list of Redux related add-ons, libraries and articles.
If you get stuck at some point, want to find a solution for your problem or are just curious about the
ecosystem, check out the repository. Otherwise, I encourage you to join the official Slack Group123

for further recommendations.
122https://github.com/markerikson/redux-ecosystem-links
123https://slack-the-road-to-learn-react.wieruch.com/

https://github.com/markerikson/redux-ecosystem-links
https://github.com/markerikson/redux-ecosystem-links
https://slack-the-road-to-learn-react.wieruch.com/
https://github.com/markerikson/redux-ecosystem-links
https://slack-the-road-to-learn-react.wieruch.com/

Redux Ecosystem Outline 207

Redux DevTools

The Redux DevTools are essential for many developers when implementing Redux applications. It
improves the Redux development workflow by offering a rich set of features such as inspecting the
state and action payload, time traveling and realtime optimizations.

How does it work? Basically, you have two choices to use the Redux DevTools. Either you integrate
it directly into your project by using its node package with npm or you install the official browser
extension. While the former comes with an implementation setup in your application, the latter can
simply be installed for your browser without changing your implementation.

The most obvious feature is to inspect actions and state. Rather than using the redux-logger124, you
can use the Redux DevTools to get insights into these information. You can follow each state change
by inspecting the action and the state.

Another great feature is the possibility to time travel. In Redux you dispatch actions and travel
from one state to another state. The Redux DevTools enable you to travel back in time by reverting
actions. For instance, that way you wouldn’t need to reload your browser anymore to follow a set of
actions to get to a specific application state. You could simply alter the actions in between by using
the Redux DevTools. You can trace back what action led to which state.

In addition, you can persist your Redux state when doing page reloads with Redux DevTools. That
way, you don’t need to perform all the necessary actions to get to a specific state anymore. You simply
reload the page and keep the same application state. This enables you to debug your applicationwhen
having one specific application state.

However, there are more neat features that you might enjoy while developing a Redux application.
You can find all information about the Redux DevTools in the official repository125.

124https://github.com/evgenyrodionov/redux-logger
125https://github.com/gaearon/redux-devtools

https://github.com/evgenyrodionov/redux-logger
https://github.com/gaearon/redux-devtools
https://github.com/evgenyrodionov/redux-logger
https://github.com/gaearon/redux-devtools

Redux Ecosystem Outline 208

Connect Revisited

In one of the previous chapters, you have connected your view layer to your state layer with react-
redux126. There you have used the provider pattern in React to make the state accessible to your
entire view layer.

The connect higher order components enabled you to wire the Redux store to any component. The
most often used two arguments are mapStateToProps() and mapDispatchToProps() for the connect
higher order component. While the former gives access to the state, the latter gives access to actions
to be dispatched for manipulating the state.

However, connect has two more optional arguments that shouldn’t stay uncovered in this book.

The third argument is called mergeProps(). As arguments it gets the result from mapStateTo-

Props(), mapDispatchToProps() and the parent props: mergeProps(stateProps, dispatchProps,

ownProps). The function returns props as an object to the wrapped component. Basically, it gives
you an intermediate layer to mix up stateProps and dispatchProps before they reach the wrapped
component. However, it is rarely used. Often, when mixing up state and actions in this layer, it is
associated with a bad state architecture. You should ask yourself if something else can be changed
to avoid this intermediate layer.

The fourth argument is called options. It is an object to configure the connect higher order com-
ponent. It comes with these additional properties: pure, areStatesEqual(), areOwnPropsEqual(),
areMergedPropsEqual(). How does it work altogether? When the first argument, the pure property,
is set to true, the connect higher order component will avoid re-rendering the view and avoids
the calls to its arguments mapStateToProps(), mapDispatchToProps() and mergeProps(). But only
when the equality checks of areStatesEqual(), areOwnPropsEqual(), areMergedPropsEqual()
remain equal based on their respective equality checks. These equality checks are performed on
the previous state and props and updated state and props. These equality checks can be modified
in the options areStatesEqual, areOwnPropsEqual, areMergedPropsEqual. Otherwise they have a
default equality check.

After all, the options are a pure performance optimization. It is rarely used when developing Redux
applications. Basically, you can set the pure property to true to avoid re-renderings and other
argument evaluations of the connect higher order component. But it comes with certain default
equality checks that can be configured. In addition, the underlying assumption is that the wrapped
component is a pure component and doesn’t rely on any other side-effect data.

If you want to read up the connect higher order component again, you can checkout the official
repository of react-redux127 and look for the connect chapter.

126https://github.com/reactjs/react-redux
127https://github.com/reactjs/react-redux

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux

Redux Ecosystem Outline 209

Concise Actions and Reducers

Redux made state management predictable with clear constraints. Yet, these constraints come with
a lot of code to manage actions and reducers. There are people who argue that writing Redux code
is verbose. That’s why there exist utility libraries on top of Redux to reduce the boilerplate code.
One of them is called redux-actions128.

The library attempts to make your actions and reducers concise. It comes with three methods:
createAction(), handleAction() and combineActions(). The book will give you a brief overview
of the former two methods.

The createAction() method is a utility for action creators. To be more specific, the method should
be named: createActionCreator(). The only required argument for the method is an action type.

Code Playground

import { createAction } from 'redux-actions';

const doAddTodo = createAction('TODO_ADD');

The doAddTodo() is an action creator. It uses the specified action type ‘TODO_ADD’. When using it,
you can pass a payload when needed. It becomes automatically allocated under a payload property.

Code Playground

const action = doAddTodo({ id: '0', name: 'learn redux', completed: false });

// action: {

// type: 'TODO_ADD',

// payload: {

// id: '0',

// name: 'learn redux',

// completed: false

// }

// }

The handleAction() method is a utility for reducers. It aligns action types with reducers whereas
no switch case statement is needed anymore. It takes the action type as argument and a reducer
function for handling the incoming action. As third argument, it takes an initial state.

128https://github.com/acdlite/redux-actions

https://github.com/acdlite/redux-actions
https://github.com/acdlite/redux-actions

Redux Ecosystem Outline 210

Code Playground

import { handleAction } from 'redux-actions';

handleAction('TODO_ADD', applyAddTodo, {});

function applyAddTodo(state, action) {

// ...

// return new state

}

The two methods createAction() and handleAction() have sibling methods for using, creating,
and handling multiple actions too: createActions() and handleActions(). Especially when defin-
ing a reducer, it makes sense to map multiple action types to multiple handlers.

Code Playground

import { handleActions } from 'redux-actions';

const reducer = handleActions({

TODO_ADD: applyAddTodo,

TODO_TOGGLE: applyToggleTodo,

}, initialState);

As you can see, it is far more concise than defining reducers in plain JavaScript.

Code Playground

function reducer(state = initialState, action) {

switch(action.type) {

case 'TODO_ADD' : {

return applyAddTodo(state, action);

}

case 'TODO_TOGGLE' : {

return applyToggleTodo(state, action);

}

default : return state;

}

}

The drawback when using the library is that it hides how Redux works with plain JavaScript. It can
be difficult for newcomers to grasp what’s going on when using such utility libraries from the very
beginning without understanding how actions and reducers in Redux work.

Redux Ecosystem Outline 211

The library is only a small utility belt for Redux, yet a lot of people are using it. You can read up
everything about it in the official documentation129.

129https://github.com/acdlite/redux-actions

https://github.com/acdlite/redux-actions
https://github.com/acdlite/redux-actions

Redux Ecosystem Outline 212

React Redux Libraries

Apart from the react-redux130 library that glues together your view and state layer, there exist other
libraries that can be used when you already use React and Redux. Usually, these libraries provide
you with React higher order components that are coupled to the Redux store. That way, you don’t
need to worry about the state management when it is shielded away from you.

For instance, when using HTML forms in React, it is often tedious to track the state of each input
element in your local component. Moreover you are often confronted with validation of these forms.
The library redux-form131 helps you to keep track of the form state not in the local state but in the
Redux store. It enables you to access and update the form state through a higher order component
that is connected to the Redux store. In addition, it supports you in validating your form state before
a user can submit it.

Another example would be a table component in React. A plain table component in React can be
easily written on your own. But what about certain features such as sorting, filtering or pagination?
Then it becomes difficult, because you would have to manage the state of each initialized table
component. There exist several libraries that help you to implement tables in React and glue them
to the Redux store. For instance, the fixed-data-table132 can be used for such cases.

There are a ton of libraries that already abstract away the state management for you when using
common components such as forms or tables. You can have a look into this repository133 to get to
know various of these libraries. It makes sense to use battle tested abstractions as libraries before
implementing them on your own.

130https://github.com/reactjs/react-redux
131https://github.com/erikras/redux-form
132https://github.com/facebook/fixed-data-table
133https://github.com/markerikson/react-redux-links

https://github.com/reactjs/react-redux
https://github.com/erikras/redux-form
https://github.com/facebook/fixed-data-table
https://github.com/markerikson/react-redux-links
https://github.com/reactjs/react-redux
https://github.com/erikras/redux-form
https://github.com/facebook/fixed-data-table
https://github.com/markerikson/react-redux-links

Redux Ecosystem Outline 213

Routing with Redux

In single page applications you will introduce routing eventually. In React, there exists one preferred
library for routing: React Router134. There might exist other routing libraries in other single page
application solutions. These solutions help you to navigate from URL to URL without reloading the
page. That’s how single page applications work after all. You only fetch your application once, but
keep track of the state even when you route from URL to URL. Thus the routes in your URLs are
state, too. But is it managed in the Redux store?

The common sense when using routing in Redux is that the Router handles the URL and Redux
handles the state. There is no interaction between them. For instance, when you decide to store your
visibility filter SHOW_ALL into your URL (domain.com?filter=SHOW_ALL) instead of your Redux
store, it is fine doing it. You would only have to retrieve the state from the URL and not from the
Redux store. It depends on your own setup. In the end, the Router holds the single source of truth
for the URL state and the Redux store holds the single source of truth for the application state. You
can read more about this topic in the official documentation135 of Redux.

134https://github.com/ReactTraining/react-router
135http://redux.js.org/docs/advanced/UsageWithReactRouter.html

https://github.com/ReactTraining/react-router
http://redux.js.org/docs/advanced/UsageWithReactRouter.html
https://github.com/ReactTraining/react-router
http://redux.js.org/docs/advanced/UsageWithReactRouter.html

Redux Ecosystem Outline 214

Typed Redux

JavaScript by nature is an untyped language. You will often encounter bugs in your career that could
have been prevented by type safety. In Redux, type safety can make a lot of sense, because you can
define exactly what kind of types go into your actions, reducers or state. You could define that an
action that creates a todo item would have the property name with the type String and the property
completed with the type Boolean. Every time you pass a wrong typed value for these properties to
create a todo item, you would get an error on compile time of your application. You wouldn’t wait
until your application runs to figure out that you have passed a wrong value to your action. There
wouldn’t be a runtime exception when you can already cover these bugs during compile time.

Typed JavaScript can be a verbose solution when working on short living or simple projects. But
when working in a large code base, where code needs to be kept maintainable, it is advisable to use
a type checker. It makes refactorings easier and adds a bunch of benefits to the developer experience
due to editor and IDE integrations.

There exist two major solutions gradually using JavaScript as a typed language: Flow (Facebook)
and TypeScript (Microsoft). While the former has its biggest impact in the React community, the
latter is well adopted amongst other frameworks and libraries.

What would a type checker like Flow look like when using in Redux? For instance, in a todo reducer
the state could be defined by a type:

Code Playground

type Todo = {

id: string,

name: string,

completed: boolean,

};

type Todos = Array<Todo>;

function todoReducer(state: Todos = [], action) {

switch(action.type) {

case ADD_TODO : {

return applyAddTodo(state, action);

}

default : return state;

}

}

Now, whenever an action leads to a state that is not defined by its type definition, you would get
an error on compile time. In addition, you could use plugins for your editor or IDE to give you the

Redux Ecosystem Outline 215

early feedback that something is wrong with your action or reducer. As the previous example has
shown type safety for reducers, you could apply the same for your action creators and selectors.
Everything can be type checked. You can read more about Flow on its official site136.

136https://flow.org/

https://flow.org/
https://flow.org/

Redux Ecosystem Outline 216

Server-side Redux

Server-side rendering is used to render the initial page load from a server. Every further user
interaction is done on the client-side. For instance, it is beneficial for SEO, because when a web
crawler visits your website, it can retrieve the whole application without bothering to execute
JavaScript on the client-side. It retrieves the whole application with its initial state. The initial
state can already be data that is fetched from a database. In React, but also in other single page
applications, there are solutions to deal with server-side rendering. However, introducing server-
side rendering comes with a handful of challenges. One of these challenges is state management.

When the initial page is rendered by the server-side, the initial state must be sent as a response to
the client as well. The client in return would use the initial state. For instance, imagine you want
to load data from a database before you send the response from the server to the client. Somehow
you would have to put this data into the response next to your server-side rendered application.
Afterward, the client can use the response to render the application and would already have the
initial state that comes from a database. If the data wasn’t sent along in the initial server request,
the client would have to fetch it again.

In Redux, you can initialize a Redux store anywhere. You can initialize it on a client-side to access
and manipulate the state, but also on the server-side to provide your application with an initial state.
The initial state would be put in the Redux store before the server-sided response is send to the client
application. But how does it work? The Redux store on the client-side is a singleton. There is only
one instance of the Redux store. On the server-side, the Redux store isn’t a singleton. Every time a
server-side request is made, it would initialize a new instance of the Redux store. The Redux store
can be filled with an initial state before the server-side response is sent to a client.

Server-side rendering and state management open up a whole new topic. That’s why the book
doesn’t cover the topic but only points you in the right direction. You can read more about the
topic in the official Redux documentation137.

137http://redux.js.org/docs/recipes/ServerRendering.html

http://redux.js.org/docs/recipes/ServerRendering.html
http://redux.js.org/docs/recipes/ServerRendering.html

MobX
The next chapters of the book will dive into an alternative library that provides a state management
solution: MobX. However, the book will not allocate the same space as for Redux and thus not deeply
dive into the topic. Because MobX doesn’t follow an opinionated way of how to structure your state
management, it is difficult to tackle it from all angles. There are several ways on where to put your
state and how to update it. The book shows only a few opinionated ways, but doesn’t showcase all
of them.

MobX138 advertises itself as simple yet scalable state management library. It was created and
introduced by Michel Weststrate139 and heavily used, thus battle tested, in his own company. MobX
is an alternative to Redux for state management. It grows in popularity even though only a fraction
of people uses it as a state management alternative to Redux. In a later chapter, you can read about
the differences between both libraries for state management, because you may want to make an
informed decision on whether you should use Redux or MobX to scale your state management.

The library uses heavily JavaScript decorators that are not widely adopted and supported by
browsers yet. But they are not mandatory and you can avoid using them with plain functions. You
can find these plain functions in the official documentation140. However, this book will showcase
the usage of these decorators, because it is another exciting way of using JavaScript.

Along the way of the following chapters you can decide to opt-in any time the MobX + React
DevTools141. You can install the node package with npm and place the DevTools component that
comes from the library somewhere between your components.

138https://mobx.js.org/
139https://twitter.com/mweststrate
140https://mobx.js.org/
141https://github.com/mobxjs/mobx-react-devtools

https://mobx.js.org/
https://twitter.com/mweststrate
https://mobx.js.org/
https://github.com/mobxjs/mobx-react-devtools
https://github.com/mobxjs/mobx-react-devtools
https://mobx.js.org/
https://twitter.com/mweststrate
https://mobx.js.org/
https://github.com/mobxjs/mobx-react-devtools

MobX 218

Introduction

MobX is often used in applications that have a view layer such as React. Thus the state, similar to
Redux, needs to be connected to the view. It needs to be connected in a way that the state can be
updated and the updated state flows back into the view.

Concept Playground

View -> MobX -> View

The schema can be elaborated to give more detail about MobX and its parts.

Concept Playground

View -> (Actions) -> State -> (Computed Values) -> Reactions -> View

It doesn’t need to be necessarily the view layer, but when using MobX in an application with
components, most likely the viewwill either mutate the state directly or use aMobX action tomutate
it. It can be as simple as a onClick handler in a component that triggers the mutation. However, the
mutation could also be triggered by a side-effect (e.g. scheduled event).

The state in MobX isn’t immutable, thus you can mutate the state directly. Actions in MobX can
be used to mutate the state too, but they are not mandatory. You are allowed to mutate the state
directly. There is no opinionated way around how to update the state. You have to come up with
your own best practice.

In MobX the state becomes observable. Thus, when the state changes, the application reacts to the
changes with so called reactions. The part of your application that uses these reactions becomes
reactive. For instance, a MobX reaction can be as simple as a view layer update. The view layer in
MobX becomes reactive by using reactions. It will update when the state in MobX updates.

In between of an observable MobX state and MobX reactions are computed values. These are
not mandatory, similar to the MobX Actions, but add another fine-grained layer into your state.
Computed values are derived properties from the state or from other computed values. Apart from
the MobX state itself, they are consumed by reactions too. When using computed values, you can
keep the state itself in a simple structure. Yet you can derive more complex properties from the state
with computed values that are used in reactions too. Computed values evaluate lazily when used in
reactions when the state changes. They don’t necessarily update every time the state changes, but
only when they are consumed in a reaction that updates the view.

These are basically all parts in MobX. The state can be mutated directly or by using a MobX action.
Reactions observe these state changes and consume the state itself or computed values from the state
or other computed values. Both ends, actions and reactions, can simply be connected to a view layer
such as React. The connection can happen in a straight forward way or with a bridging library as
you will experience it in the following chapters.

MobX 219

Observable State

The state in MobX can be everything from JavaScript primitives to complex objects, arrays or only
references over to classes that encapsulate the state. Any of these properties can be made observable
by MobX. When the state changes, all the reactions, for instance the reaction of the view layer, will
run to re-render the view. State in MobX isn’t managed in one global state object. It is managed in
multiple states that are most of the time called stores or states.

Code Playground

const { observable } = mobx;

class TodoStore {

@observable todos = [];

}

const todoStore = new TodoStore();

Keep in mind that it doesn’t need to be managed in a store instance that comes from a JavaScript
class. It can be a plain list of todos. The way of using stores to manage your MobX state is already
opinionated. Since there are a couple of different ways on where to store your state in MobX, the
book will teach the straight forward way of managing it in stores. In the end, stores enable you to
manage a predictable state where every store can be kept responsible for its own substate.

The state in MobX can be mutated directly without actions:

Code Playground

todoStore.todos.push({ id: '0', name: 'learn redux', completed: true });

todoStore.todos.push({ id: '0', name: 'learn mobx', completed: false });

That means as well, that the store instances can leak into the view layer and an onClick handler
could mutate the state directly in the store.

State and view layer can be coupled very closely in MobX. In comparison to Redux, it doesn’t need
to use explicit actions to update the state indirectly. You will get to know more about MobX actions
in a later chapter.

Autorun

The autorun functionality in MobX is not often seen. It is similar to the subscription() method
of the Redux store. It is always called when the observable state in MobX changes and once in the
beginning when the MobX state initializes. Similar to the subscription() method of the Redux

MobX 220

store, it is later on used to make the view layer reactive with MobX. The autorun function is only
one way to produce a reaction on MobX.

However, you can use it to experiment with your state updates while learningMobX. You can simply
add it to your TodoStore example.

Code Playground

const { observable, autorun } = mobx;

class TodoStore {

@observable todos = [];

}

const todoStore = new TodoStore();

autorun(() => console.log(todoStore.todos.length));

todoStore.todos.push({ id: '0', name: 'learn redux', completed: true });

todoStore.todos.push({ id: '0', name: 'learn mobx', completed: false });

It will run the first time when the state initializes, but then every time again when the observable
state updates. You can open the MobX Playground142 to experiment with it.

Actions

As mentioned, the state can be mutated directly in MobX. But a handful of people would argue that
it is a bad practice. It couples the state mutation to close to the view layer when you start to mutate
the state directly in an onClick handler. Therefore, you can use MobX actions to decouple the state
update and keep your state updates at one place.

Code Playground

const { observable, autorun, action } = mobx;

class TodoStore {

@observable todos = [];

@action addTodo(todo) {

this.todos.push(todo);

}

}

142https://jsbin.com/vawugugugu/4/edit?js,console

https://jsbin.com/vawugugugu/4/edit?js,console
https://jsbin.com/vawugugugu/4/edit?js,console

MobX 221

const todoStore = new TodoStore();

autorun(() => console.log(todoStore.todos.length));

todoStore.addTodo({ id: '0', name: 'learn redux', completed: true });

todoStore.addTodo({ id: '1', name: 'learn mobx', completed: false });

However, MobX is not opinionated about the way you update your state. You can use actions or
mutate the state directly without an action.

Code Playground

class TodoStore {

@observable todos = [];

addTodo(todo) {

this.todos.push(todo);

}

}

In order to enforce state updates with actions, you can opt-in the useStrict() functionality by
MobX. After you have set it to true, every state update needs to happen via an action. This way you
enforce the decoupling of state mutation and view with actions.

Code Playground

const { observable, autorun, action, useStrict } = mobx;

useStrict(true);

class TodoStore {

@observable todos = [];

@action addTodo(todo) {

this.todos.push(todo);

}

}

const todoStore = new TodoStore();

autorun(() => console.log(todoStore.todos.length));

MobX 222

todoStore.addTodo({ id: '0', name: 'learn redux', completed: true });

todoStore.addTodo({ id: '1', name: 'learn mobx', completed: false });

You can test the MobX action and the useStrict() function in the MobX Playground143.

In addition, it makes always sense to think thoughtfully about your actions. In the previous case,
every call of addTodo() would lead all relying reactions to run. That’s why the autorun function
runs every time you add a todo item. So how would you accomplish to add multiple todo items at
once without triggering reactions for every todo item? You could have another action that takes an
array of todo items.

Code Playground

const { observable, autorun, action } = mobx;

class TodoStore {

@observable todos = [];

@action addTodo(todo) {

this.todos.push(todo);

}

@action addTodos(todos) {

todos.forEach(todo => this.addTodo(todo));

}

}

const todoStore = new TodoStore();

autorun(() => console.log(todoStore.todos.length));

todoStore.addTodos([

{ id: '0', name: 'learn redux', completed: true },

{ id: '1', name: 'learn mobx', completed: false },

]);

That way, the relying reactions only evaluate once after the action got called. You can find the
necessary code to play around with in the MobX Playground144.

143https://jsbin.com/qazazajusa/1/edit?js,console
144https://jsbin.com/loyuser/10/edit?js,console

https://jsbin.com/qazazajusa/1/edit?js,console
https://jsbin.com/loyuser/10/edit?js,console
https://jsbin.com/qazazajusa/1/edit?js,console
https://jsbin.com/loyuser/10/edit?js,console

MobX 223

Computed Values

Computed values are derived properties from the state or other computed values. They have no
side-effects and thus are pure functions. The computed values help you to keep your state structure
simple yet can derive complex properties from it. For instance, when you would filter a list of todos
for their completed property, you could compute the values of uncompleted todo items.

Code Playground

const { observable, action, computed } = mobx;

class TodoStore {

@observable todos = [];

@action addTodo(todo) {

this.todos.push(todo);

}

@computed get incompleteTodos() {

return this.todos.filter(todo => !todo.completed);

}

}

The computation happens reactively when the state has changed and a reaction asks for it. Thus,
these computed values are at your disposal, apart from the state itself, for your view layer later
on. In addition, they don’t compute actively every time but rather only compute reactively when a
reaction demands it. You can experiment with it in the MobX Playground145.

145https://jsbin.com/didenujipi/3/edit?js,console

https://jsbin.com/didenujipi/3/edit?js,console
https://jsbin.com/didenujipi/3/edit?js,console

MobX in React
The basics in MobX should be clear by now. The state in MobX is mutable and can be mutated
directly, by actions too or only by actions, and not directly, when using the strict mode. When
scaling your state management in MobX, you would keep it in multiple yet manageable stores to
keep it maintainable. These stores can expose actions and computed values, but most important they
make their properties observable. All of these facts already give you an opinionated way of how to
store state (e.g. with stores) and how to update the state (e.g. explicit actions with strict mode).
However, you can decide to use a different opinionated approach.

Now, every time an observable property in a store changes, the autorun function of MobX runs.
The autorun makes it possible to bridge the MobX state updates over to other environments. For
instance, it can be used in a view layer, such as React, to re-render it every time the state changes.
MobX and React match very well. Both libraries solve their own problem, but can be used together
to build a sophisticated scaling application. The React view layer can receive the state from MobX,
but also can mutate the state. It can connect to both ends: getting state and mutating it.

When you start to introduce React to your MobX Playground, you could begin to display the list of
todo items from your todoStore.

Code Playground

class TodoList extends React.Component {

render() {

return (

<div>

{this.props.todoStore.todos.map(todo =>

<div key={todo.id}>

{todo.name}

</div>

)}

</div>

);

}

}

ReactDOM.render(

<TodoList todoStore={todoStore} />,

document.getElementById('app')

);

MobX in React 225

However, when you update your MobX store nothing happens. The view layer is not notified about
any state updates, because these happen outside of React. You can use the autorun function of MobX
to introduce a naive re-rendering of the view layer.

Code Playground

function render() {

ReactDOM.render(

<TodoList todoStore={todoStore} />,

document.getElementById('app')

);

}

autorun(render);

Now you have one initial rendering of the view layer, because the autorun is running once initially,
and successive renderings when the MobX state updates. You can play around with it in the MobX
Playground146.

There exists a neat library that bridges from MobX to React: mobx-react147. It spares you to use the
autorun reaction in order to re-render the view layer. Instead it uses a observer decorator, that uses
the autorun function under the hood, to produce a reaction. The reaction simply flushes the update
to a React component to re-render it. It makes your React view layer reactive and re-renders it when
the observable state in MobX has changed.

Code Playground

const { observer } = mobxReact;

...

@observer

class TodoList extends React.Component {

render() {

return (

<div>

{this.props.todoStore.todos.map(todo =>

<div key={todo.id}>

{todo.name}

</div>

)}

</div>

146https://jsbin.com/vobicoqifu/1/edit?html,js,output
147https://github.com/mobxjs/mobx-react

https://jsbin.com/vobicoqifu/1/edit?html,js,output
https://jsbin.com/vobicoqifu/1/edit?html,js,output
https://github.com/mobxjs/mobx-react
https://jsbin.com/vobicoqifu/1/edit?html,js,output
https://github.com/mobxjs/mobx-react

MobX in React 226

);

}

}

ReactDOM.render(

<TodoList todoStore={todoStore} />,

document.getElementById('app')

);

...

Again you can play around with it in the MobX Playground148. If you want to use the TodoList

component as functional component, you can use the observer as well.

Code Playground

const TodoList = observer(function (props) {

return (

<div>

{props.todoStore.todos.map(todo =>

<div key={todo.id}>

{todo.name}

</div>

)}

</div>

);

});

You can find the example in the following MobX Playground149.

148https://jsbin.com/foqonacowi/1/edit?html,js,output
149https://jsbin.com/qucesewiwe/1/edit?html,js,output

https://jsbin.com/foqonacowi/1/edit?html,js,output
https://jsbin.com/qucesewiwe/1/edit?html,js,output
https://jsbin.com/foqonacowi/1/edit?html,js,output
https://jsbin.com/qucesewiwe/1/edit?html,js,output

MobX in React 227

Local State

As mentioned before, MobX is not opinionated about how to store your state and how to update it. It
goes so far, that you can even exchange your local state in React, this.state and this.setState(),
with MobX. The case can be demonstrated by introducing a component that adds a todo item to the
list of todo items from the previous example.

Code Playground

ReactDOM.render(

<div>

<TodoAdd todoStore={todoStore} />

<TodoList todoStore={todoStore} />

</div>,

document.getElementById('app')

);

The TodoAdd component only renders an input field to capture the name of the todo item and a
button to create the todo item.

Code Playground

@observer

class TodoAdd extends React.Component {

render() {

return (

<div>

<input

type="text"

value={this.input}

onChange={this.onChange}

/>

<button

type="button"

onClick={this.onSubmit}

>Add Todo</button>

</div>

);

}

}

The two handlers class methods are missing. The onChange handler can be an action itself to update
a internally managed value of the input field.

MobX in React 228

Code Playground

@observer

class TodoAdd extends React.Component {

@observable input = '';

@action onChange = (event) => {

this.input = event.target.value;

}

render() {

...

}

}

This way, the input property is not allocated in the local state of React, but in the observable state
of MobX. The observer decorator makes sure that the component stays reactive to its observed
properties. The onSubmit handler finally creates the todo item yet alters the local state of the
component again, because it has to reset the input value and increments the identifier.

Code Playground

@observer

class TodoAdd extends React.Component {

@observable input = '';

@observable id = 0;

@action onSubmit = () => {

this.props.todoStore.addTodo({

id: this.id,

name: this.input,

completed: false,

});

this.id++;

this.input = '';

}

@action onChange = (event) => {

...

}

MobX in React 229

render() {

...

}

}

MobX is able to take over the local state of React. You wouldn’t need to use this.state and
this.setState() anymore. The previous example can be found in the MobX Playground150. Again
you experience that MobX isn’t opinionated about the way the state is managed. You can have the
state management encapsulated in a store class or couple it next to a component as local state. It can
make React local state obsolete. But should it? That is your own decision.

150https://jsbin.com/sonate/1/edit?html,js,output

https://jsbin.com/sonate/1/edit?html,js,output
https://jsbin.com/sonate/1/edit?html,js,output

MobX in React 230

Scaling Reactions

Each component can be decorated with an observer to be reactive to observable state changes in
MobX. When introducing a new component to display a todo item, you can decorate it as well. This
TodoItem component receives the todo property, but also the todoStore in order to complete a todo
item.

Code Playground

const TodoItem = observer(({ todo, todoStore }) => {

return (

<div>

{todo.name}

<button

type="button"

onClick={() => todoStore.toggleCompleted(todo)}

>

{todo.completed

? "Incomplete"

: "Complete"

}

</button>

</div>

);

});

Notice that the TodoItem is a functional stateless component. In addition, in order to complete a
todo item, you would have to introduce the toggleCompleted action in the TodoStore.

Code Playground

class TodoStore {

@observable todos = [];

...

@action toggleCompleted(todo) {

todo.completed = !todo.completed;

}

}

The TodoList component could use the TodoItem component now.

MobX in React 231

Code Playground

@observer

class TodoList extends React.Component {

render() {

return (

<div>

{this.props.todoStore.todos.map(todo =>

<TodoItem

todoStore={this.props.todoStore}

todo={todo}

key={todo.id}

/>

)}

</div>

);

}

};

In the running application you should be able to complete a todo item. The benefit of splitting up one
reactive component into multiple reactive components can be seen when adding two console.log()
statements.

Code Playground

const TodoItem = observer(({ todo, todoStore }) => {

console.log('TodoItem: ' + todo.name);

return (

...

);

});

@observer

class TodoList extends React.Component {

console.log('TodoList');

render() {

...

}

};

You can open up the application in the MobX Playground151. When you add a todo item, you
will get the console.log() outputs for the TodoList component and only the newly created

151https://jsbin.com/sonate/6/edit?js,console,output

https://jsbin.com/sonate/6/edit?js,console,output
https://jsbin.com/sonate/6/edit?js,console,output

MobX in React 232

TodoItem. When you complete a todo item, you will only get the console.log() of the completing
TodoItem component. The reactive component only updates when their observable state changes.
Everything else doesn’t update, because the observer decorator implements under the hood the
shouldComponentUpdate() lifecycle method of React to prevent the component from updating when
nothing has changed. You can readmore about optimizingMobX performance in React in the official
documentation152.

152https://mobx.js.org/best/react-performance.html

https://mobx.js.org/best/react-performance.html
https://mobx.js.org/best/react-performance.html
https://mobx.js.org/best/react-performance.html

MobX in React 233

Inject Stores

So far, the application passes down the store from the React entry point via props to its child
components. They are already passed down more than one layer. However, the store(s) could be
used directly in the components by using them directly (when accessible in the file). They are only
observable state. SinceMobX is not opinionated about where to put state, the observable state, in this
case stores, could live anywhere. But as mentioned, the book tries to give an opinionated approach
as best practice.

Themobx-react153 library provides youwith two helpers to pass the observable state implicitly down
to the components (via React‘s context) rather than passing them through every component layer
explicitly.

The first helper is the Provider component that passes down all the necessary observable states
down.

Code Playground

const { observer, Provider } = mobxReact;

...

You can use it in the React entry point to wrap your component tree. In addition, you can pass it any
observable state that should be passed down. In this case, the observable state is the store instance.

Code Playground

...

ReactDOM.render(

<Provider todoStore={todoStore}>

<div>

<TodoAdd />

<TodoList />

</div>

</Provider>,

document.getElementById('app')

);

However, it could be multiple stores or only a couple of observable primitives.

153https://github.com/mobxjs/mobx-react

https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react

MobX in React 234

Code Playground

<Provider

storeOne={storeOne}

storeTwo={storeTwo}

anyOtherState={anyOtherState}

>

...

</Provider>

The second helper from the library is the inject decorator. You can use it for any component down
your component tree that is wrapped somewhere above by the Provider component. It retrieves the
provided observable state from React’s context as props.

Code Playground

const { observer, inject, Provider } = mobxReact;

...

@inject('todoStore') @observer

class TodoAdd extends React.Component {

...

}

The TodoAdd component already has access to the todoStore now. You can add the injection to the
other components too. It can be used as function for functional stateless components.

Code Playground

const TodoItem = inject('todoStore')(observer(({

todo, todoStore

}) =>

<div>

{todo.name}

<button

type="button"

onClick={() => todoStore.toggleCompleted(todo)}

>

{todo.completed

? "Incomplete"

: "Complete"

}

MobX in React 235

</button>

</div>

));

The TodoList component doesn’t need to manually pass down the todoStore anymore. The
TodoItem already accesses it via its inject helper.

Code Playground

@inject('todoStore') @observer

class TodoList extends React.Component {

render() {

return (

<div>

{this.props.todoStore.todos.map(todo =>

<TodoItem

todo={todo}

key={todo.id}

/>

)}

</div>

);

}

};

Every component can access the observable state, that is passed to the Provider component, with
the inject decorator. This way you keep a clear separation of state and view layer. You can access
the project in the MobX Playground154 again.

154https://jsbin.com/sonate/7/edit?js,output

https://jsbin.com/sonate/7/edit?js,output
https://jsbin.com/sonate/7/edit?js,output

MobX in React 236

Advanced MobX

MobX is not opinionated. Thus it gives you a handful of tools to accomplish your on way of
mastering state management. It would be sufficient to use the basics of MobX to introduce state
management in your application. But there are more tools hidden in MobX that this chapter is
going to point out. It addition, this chapter should give you a couple more pillars to understand and
use MobX successfully in your own way.

Other Reactions

You have encountered two reactions by now: autorun and observer. The observer produces a reaction
because it uses autorun under the hood. It is only used in the mobx-react package. Thus, both
functions are used to create reactions based on observable state changes. While the autorun function
can be used to re-render naively the UI, it can also used for broader domains. The observer decorator
is solely used to make a view-layer reactive.

However, MobX comes with more reactions. The book will not go too much into detail here, but it
does no harm to be aware of other options too. The MobX when155 is another function that produces
a reaction. It is based on predicates and effects. A given predicate runs as long as it returns true.
When it returns true, the effect is called. After that the autorunner is disposed. The when function
returns a disposer to cancel the autorunner prematurely, so before an effect can be called.

Code Playground

const { observable, autorun, computed, when } = mobx;

class TodoStore {

@observable todos = [];

constructor() {

when(

// once (predicate)...

() => this.hasCompleteTodos,

// ... then (effect)

() => this.celebrateAccomplishment()

);

}

@computed get completeTodos() {

return this.todos.filter(todo => todo.completed);

}

155https://mobx.js.org/refguide/when.html

https://mobx.js.org/refguide/when.html
https://mobx.js.org/refguide/when.html

MobX in React 237

@computed get hasCompleteTodos() {

return this.completeTodos.length > 0;

}

celebrateAccomplishment() {

console.log('First todo completed, celebrate it!');

}

}

const todoStore = new TodoStore();

autorun(() => console.log(todoStore.todos.length));

todoStore.todos.push({ id: '0', name: 'finish the book', completed: false });

todoStore.todos.push({ id: '1', name: 'learn redux', completed: true });

todoStore.todos.push({ id: '2', name: 'learn mobx basics', completed: true });

todoStore.todos.push({ id: '3', name: 'learn mobx', completed: false });

So how many times does the reaction run? You can take your guess first and afterward open the
MobX Playground156 to experience the reaction yourself. Basically the when triggers its effect when
the predicate returns true. But it only triggers once. As you can see, two todo items that are completed
are added. However, the celebrateAccomplishment() method only runs once. This way MobX
allows you to use its reactions to trigger side-effects. You could trigger anything ranging from an
animation to an API call.

Another function in MobX, the reaction function157 itself, can be used to produce MobX reactions
too. It is a fine-grained version of autorun. Whereas autorun will always run when the observable
state has changed, the reaction function only runs when a particular given observable state has
changed.

Code Playground

const { observable, autorun, computed, reaction } = mobx;

class TodoStore {

@observable todos = [];

constructor() {

reaction(

156https://jsbin.com/loyuser/4/edit?js,console
157https://mobx.js.org/refguide/reaction.html

https://jsbin.com/loyuser/4/edit?js,console
https://mobx.js.org/refguide/reaction.html
https://jsbin.com/loyuser/4/edit?js,console
https://mobx.js.org/refguide/reaction.html

MobX in React 238

() => this.completeTodos.length,

sizeCompleteTodos => console.log(sizeCompleteTodos + " todos completed!")

);

}

@computed get completeTodos() {

return this.todos.filter(todo => todo.completed);

}

}

const todoStore = new TodoStore();

autorun(() => console.log(todoStore.todos.length));

todoStore.todos.push({ id: '0', name: 'finish the book', completed: false });

todoStore.todos.push({ id: '1', name: 'learn redux', completed: true });

todoStore.todos.push({ id: '2', name: 'learn mobx basics', completed: true });

todoStore.todos.push({ id: '3', name: 'learn mobx', completed: false });

How many times does the reaction run? First you can have a guess, afterward you can confirm it
by trying it in the MobX Playground158.

Now you have seen two more functions in MobX that produce reactions: when and reaction.
Whereas the when function only runs once an effect when the predicate returns null, the reaction
runs every time when a particular observable state has changed. You can use both to trigger side-
effects, such as an API call.

Be Opinionated

MobX gives you all the tools that are needed to manage state in modern JavaScript application.
However, it doesn’t give you an opinionated way of doing it. This way you have all the freedom to
manage your state yet it can be difficult to follow best practices or to align a team on one philosophy.
That’s why it is important to find your own opinionated way of doing things in MobX. You have to
align on one opinionated way to manage your state.

The chapters before have shown you that observable state in MobX can be far away managed in
stores yet it could be used in the local state of the view layer too. Should MobX be used instead of
this.state and this.setState() in React? Be clear about how close you want to keep your MobX
state to your view layer.

Another thing you should have an opinion about is how you update your observable state. Do you
mutate the state directly in your view? Going this path would lead to coupling your state closer to

158https://jsbin.com/loyuser/5/edit?js,console

https://jsbin.com/loyuser/5/edit?js,console
https://jsbin.com/loyuser/5/edit?js,console

MobX in React 239

your view layer. On the other hand, you could use explicit MobX actions. It would keep your state
mutation at one place. You can make them even mandatory by using the useStrict() functionality
provided by MobX. That way, every state mutation would have to go through an explicit action. No
direct mutations of the state would be allowed anymore. Recommendation: You should make your
state mutations as explicit as possible with actions and useStrict().

When using MobX to complement your view layer, you would need to decide on how to pass your
state around. You can simply allocate your state next to your components, import it directly from
another file using JavaScript ES6 import and export statements, pass it down explicitly (e.g. in React
with props) or pass it down implicitly from your root component with inject() function and the
Provider component. You should avoid to mix up these things and follow one opinionated way.
Recommendation: You should use the inject() function and Provider component to make your
state implicitly accessible to your view layer.

Last but not least, you would need to align on a state structure. Observable state in MobX can be
anything. It can be primitives, it can be objects or arrays but it can also be store instances derived
from JavaScript classes. Without mixing up everything, you would need to align on a proper state
architecture. The approach to manage your state in stores, as shown in the previous chapters, gives
you a maintainable way to manage your state for specific domains. In addition, you are able to
keep actions, computed values and even reactions such as autorun, reaction and when in your store.
Recommendation: You should use JavaScript classes to manage your state in stores. That way your
state management stays maintainable by domain related stores as stakeholders.

As you can see, there are a handful of decisions to make on how to use MobX. It gives you all the
freedom to decide your own way of doing things, but after all you have to establish the opinionated
way yourself and stay disciplined with it.

MobX in React 240

Alternative to Redux?

After all, is MobX a viable alternative to Redux? It depends all on yourself. Both solutions are
different in their philosophy, their underlying mechanics and in their usage. Whereas Redux gives
you one opinionated way of managing your state, MobX gives you only the tools to manage your
state but not the way of how to do things. Redux has a large community, a vibrant ecosystem of
libraries and great selection of best practices. MobX is a younger library compared to Redux, but
gives you a different approach of managing your state.

The defining powers of MobX come from its reactive nature. As you have seen when you connected
your view layer to MobX with observers, only the reactive components updated that relied on an
observable state change. Everything else stayed untouched. In a large scale application, it can keep
your view layer updates to a minimum when using MobX the right way.

In MobX you don’t need to normalize your state. You can work with references and keep your state
nested. It stays simple to update your state with mutations not worrying about immutability. On
the other hand, you have to be cautious on how close you couple your state to your view layer. In
the end, when the state is too close to your view layer, it could end up the same way as for the first
generation of single page applications were two-way data binding became a mess.

If you want to read more about the differences of Redux and MobX, I recommend you to check
out the following article: Redux or MobX: An attempt to dissolve the Confusion159. After that you
might come to a more informed decision on what you want to use for state management in your
own application.

159https://www.robinwieruch.de/redux-mobx-confusion/

https://www.robinwieruch.de/redux-mobx-confusion/
https://www.robinwieruch.de/redux-mobx-confusion/

Last but not Least
Well, if I haven’t lost you by now, you can read a bit further to make it to the end of this book. The
last chapters of this book have the objective to inspire you to apply your learnings. You will read
about further learning paths after you read the book, a life hack to improve your learning experience
and other people in the (React and) Redux ecosystem that you might want to follow for inspirations.

So far, the book has taught you different approaches of state management. Whether you are using
React, an alternative view layer library or a sophisticated SPA library; most of themwill come with a
built-in solution to deal with local state. The book has shown you React’s local statemanagement and
demonstrated approaches to scale it in plain React applications. Afterward, you learned extensively
about Redux as sophisticated state management library. It can be used in combination with any view
layer or SPA library. The book has taught you how to use it in React applications, too. As alternative
to Redux, you read about MobX as sophisticated state management library. It comes with its own
advantages and disadvantages. After all, Redux and MobX give you two different approaches to
opt-in state management to your application. However, you should never forget about your local
state management solution to keep your state coupled to your components rather than exposing it
in your global state.

Last but not Least 242

Further Learning Paths

You have built a couple of applications in this book. While reading the chapters, you adapted the
applications to apply advanced techniques, tools or features. Perhaps you even followed all of the
practical chapters closely in the book. But that’s not the end. It’s the end of me guiding you in this
learning experience, but now it’s up to you to continue with it. I guess there are far more features,
techniques or tools that you could apply to these applications. Be creative and challenge yourself by
implementing these on your own. I am curious what you come up with, so don’t hesitate to reach
out to me.

The book uses React as its view layer. But React is not mandatory to utilize Redux or MobX. Other
view layer libraries or even SPA frameworks have their own local state management. Yet they can be
used together with Redux or MobX. You can substitute the React view layer with your own solution
to build modern applications. If you haven’t read the Road to learn React160 and this book made
a good job pitching React to you, you can give the other book a shot. It teaches the fundamentals
of plain React by building a larger application that consumes an external REST API. Both books
complement each other perfectly.

I always advocate that learning with APIs is empowering161. That’s why I try to teach with APIs
when the basics of a topic are taught. Now it’s up to you to build your own applications to deepen
your understanding of the tools and techniques at your disposal. For instance, you can build your
own SoundCloud Client in (React and) Redux. It would consume the SoundCloud API. But there are
tons of platforms out there which expose their REST APIs (Reddit, Twitter or Yelp etc.). Choose one
and build a client application on top of it. I am sure, after you display some of their RESTful data,
you will come up with creative features. Again, you can always reach out to me to showcase your
applications. I am curious what you will build after you read the book.

Yet another challenge could be to build your own state management solution from scratch. Redux
is not a large library when you inspect the source code. Your first attempt could be to duplicate its
functionalities. There are several tutorials out there that already show you how to do it. But you
can try it on your own, too. Perhaps you even have another concept that should be embraced by
your state management library. Anyways, by building such a library yourself, you will fortify your
learnings.

Redux is an open source library162. That’s why it is possible for you to contribute to the project. It
can be intimidating to contribute in open source, but it is a great return of investment. Just start by
helping out for the documentation or by answering questions in GitHub issues. Youwill immediately
find yourself in a great community of contributors. You can even go beyond it and try to solve bug
issues, review pull requests or help out people on other platforms such as Reddit163. By contributing
to the topic itself, giving back something to the community, you will grow your learnings in the
topic.

160https://www.robinwieruch.de/the-road-to-learn-react/
161https://www.robinwieruch.de/what-is-an-api-javascript/
162https://github.com/reactjs/redux
163https://www.reddit.com/r/reactjs/

https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/what-is-an-api-javascript/
https://github.com/reactjs/redux
https://www.reddit.com/r/reactjs/
https://www.robinwieruch.de/the-road-to-learn-react/
https://www.robinwieruch.de/what-is-an-api-javascript/
https://github.com/reactjs/redux
https://www.reddit.com/r/reactjs/

Last but not Least 243

You can keep yourself educated in this area by reading articles about it. I write a lot about these
topics on my personal website. You can give it a shot and dig into some of the topics. One of it
gives you a list of useful tips to learn React and Redux164. Two more great external resources are the
repositories by Mark Erikson: react-redux-links165 and redux-ecosystem-links166. I would argue that
you will find any solution to a problem in them. In addition, you will dive deeper into the techniques
and tools in Redux.

If youwant to go beyond Redux, you can give RelayModern167 or Apollo Client168 a shot. Both enable
you to build GraphQL169 consuming client application. By using Relay Modern or Apollo Client, you
can give your application state management in your client API layer rather than application layer.
I am sure you will find more educating material on them if you search for it. In addition, I have
more upcoming tutorials on those technologies if you want to keep an eye on them. Similar to the
platforms that expose REST APIs, you could for instance look up platforms that expose a GraphQL
API. In your own client application you could use Relay Modern to consume the API. Perhaps there
already is a tutorial that explains how to consume these GraphQL APIs.

As you can see, there are endless possibilities to apply your learnings. Don’t hesitate and jump into
coding. I am curious what you come up with, so please reach out to me.

164https://www.robinwieruch.de/tips-to-learn-react-redux/
165https://github.com/markerikson/react-redux-links
166https://github.com/markerikson/redux-ecosystem-links
167https://facebook.github.io/relay/docs/relay-modern.html
168https://github.com/apollographql/apollo-client
169http://graphql.org/

https://www.robinwieruch.de/tips-to-learn-react-redux/
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links
https://facebook.github.io/relay/docs/relay-modern.html
https://github.com/apollographql/apollo-client
http://graphql.org/
https://www.robinwieruch.de/tips-to-learn-react-redux/
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links
https://facebook.github.io/relay/docs/relay-modern.html
https://github.com/apollographql/apollo-client
http://graphql.org/

Last but not Least 244

Never stop Learning

I believe there is one secret when it comes to learning. There exists a principle that is called the
Learning Pyramid. When you search for it in your favorite search engine, you will definitely find
it. Basically, it shows the relation between retention rates and mental activities. For instance, the
average student retention when doing lectures is 5%. That’s not a good rate at all. Let’s see how all
the other mental activities break down according to their retention rates:

• 5% Lecture
• 10% Reading (Uuups!)
• 20% Audiovisual (Phew… I hope you have purchased the Screencasts too)
• 30% Demonstration (Check!)
• 50% Discussion (Did I mention that there is a Slack Group170?)
• 75% Practice by Doing (I hope you did all practical chapters on your own! If you have
purchased the Source Code as well, use these to internalize your learnings.)

• 90% Teach Others (You can help others in the Slack Group171 when they struggle!)

Perhaps you recall it from somewhere, but it is always refreshing to see it again. In the beginning of
the book, I told you that nobody became perfect by reading a book. You have to apply your learnings.
I hope that I arranged the book in a way, enabling you with all the techniques and exercises along
the way, that you can learn form these experiences. In addition, I gave you somemore learning paths
to practice by doing in the last chapter.

Finally, let’s get to the one secret about learning that I mentioned. It is the bottom item in the pyramid
that has the biggest return of investment: Teaching Others. Personally, I made the same experience
when I started to blog about my experiences in web development, answered questions on Quora,
Reddit and Stack Overflow, and wrote a book(s). You have to dive deep into a topic in order to teach
it to others. You learn about the little nuances and you dive deep into these topics because you want
to teach them the right way. It’s no shallow learning experience, because you get to know every
detail in order to explain it precisely. You will learn tons of stuff that you didn’t know before. And
most importantly, you will internalize these things by teaching it to others.

After all, you can’t know everything. No one is an expert in everything. I challenge myself too,
by trying to teach others about web development. I get great feedback from people, positive and
negative, that I can apply to growmyself. You can do it as well. You can become better by challenging
yourself, teach something to others and grow.

So here is my quest for you after you read this book. I am sure that you have a friend, coworker
or perhaps someone you know only online, from Stack Overflow or Reddit, who is keen to learn
about state management in modern applications with React, Redux and MobX. Schedule a get-
together with this person and teach him/her state management in modern applications (when using

170https://slack-the-road-to-learn-react.wieruch.com/
171https://slack-the-road-to-learn-react.wieruch.com/

https://slack-the-road-to-learn-react.wieruch.com/
https://slack-the-road-to-learn-react.wieruch.com/
https://slack-the-road-to-learn-react.wieruch.com/
https://slack-the-road-to-learn-react.wieruch.com/

Last but not Least 245

React). You can take this book as guidance. After all, teaching others is a win-win situation. Both
participants, mentor and student, will grow from it. So my advice for you: Become a mentor, teach
others and grow.

Last but not Least 246

Acknowledgements

Foremost, I want to acknowledge the work of the people who provide us with the solutions to build
modern applications nowadays. The true heroes are the people behind the tools we use every day
in software development. And these solutions are mostly built in the free time of these people. Just
give yourself one minute and think about all the libraries you use in your own applications.

I want to thank DanAbramov172 and AndrewClark173 for open sourcing Redux. Awhole community
has gathered behind this library and I must admit that it’s a great community. In addition, I’d like
to thank Michel Weststrate174 for providing an alternative. It keeps the whole ecosystem in balance
if there is more than one solution. These solutions can learn from each other or provide different
approaches to one problem. But it always helps to think out of the box and solve problems from
different perspectives.

Again, I want to thank Dan Abramov for guiding a whole generation of JavaScript developers. You
work on solutions, such as create-react-app, that make a developer’s life easier when getting started
in React. You work closely with the community, listening to their pains and provide solutions for
those problems. Moreover, you encourage people to contribute in the ecosystem. Each day, there
are more contributors for react175, create-react-app176 and redux177. You give people a platform to
share their knowledge. For instance, that’s how you encouraged me to write about my experiences
working with React and Redux. Without you sharing the content people are writing, often it would
never reach a broader audience. You drive people to come up with things that other people could use
to solve their problems. The book wouldn’t have happened without Dan sharing my content over
the last year.

I want to thank Mark Erikson178 for his perpetual desire to help others in the world of React and
Redux. He is the keeper of the great lists (react-redux-links179) and (redux-ecosystem-links180) that
you definitely need to check out. There is not a day passing by that I wouldn’t see a helpful comment
of Mark on Reddit or Twitter about React or Redux. In addition, he is one of the many contributors
in open source who shape the libraries to become a great place for newcomers.

I want to thank Christopher Chedeau181 for his talk at React Europe 2016182 about being successful
in open source. It had a lasting impact on me and was at the time when I published my first blog
post. Thank you for your work with the community.

I want to thank my people at Small Improvements who are great mentors and always a true source

172https://twitter.com/dan_abramov
173https://twitter.com/acdlite
174https://twitter.com/mweststrate
175https://github.com/facebook/react
176https://github.com/facebookincubator/create-react-app
177https://github.com/reactjs/redux
178https://twitter.com/acemarke
179https://github.com/markerikson/react-redux-links
180https://github.com/markerikson/redux-ecosystem-links
181https://twitter.com/Vjeux
182https://www.youtube.com/watch?v=nRF0OVQL9Nw

https://twitter.com/dan_abramov
https://twitter.com/acdlite
https://twitter.com/mweststrate
https://github.com/facebook/react
https://github.com/facebookincubator/create-react-app
https://github.com/reactjs/redux
https://twitter.com/acemarke
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links
https://twitter.com/Vjeux
https://www.youtube.com/watch?v=nRF0OVQL9Nw
https://twitter.com/dan_abramov
https://twitter.com/acdlite
https://twitter.com/mweststrate
https://github.com/facebook/react
https://github.com/facebookincubator/create-react-app
https://github.com/reactjs/redux
https://twitter.com/acemarke
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links
https://twitter.com/Vjeux
https://www.youtube.com/watch?v=nRF0OVQL9Nw

Last but not Least 247

of inspiration. They supported me to make the leap educating others about the things I do in my
daily work. If you ever wanted to work at a company with a great working culture, you should
definitely consider Small Improvements183. I will always remember a coworker saying: “It doesn’t
feel like work. Every day it is like coming to a place to work with friends on a great project.”

I want to thank Per Fragemann, CEO of Small Improvements, for the chance to work, taking
responsibilities and grow at Small Improvements. He sees opportunities in people, believes in a
sustainable company culture, and gives people all they need to strive. His values taught me a lot.

A special thanks goes to Charisse Ysabel de Torres184 who contributed the awesome cover for the
book in her free time. She was keen to help me with it and in a few brainstorm and several sketching
sessions, she came up with an amazing illustration. I couldn’t have done it without you. Thank you
for being a source of inspiration, a great coworker and friend at Small Improvements.

In the end, I want to thank my girlfriend Liesa185 for always being supportive. Writing a book can
be an enduring battle. There were several weekends, mornings and evenings where I just sat down
to write this book. She prevented me from getting into burnout and managed a lot in my life. Now,
after the book is written, I hope we can have a few more relaxed weekends again. Liesa is doing
most of my marketing efforts. I wouldn’t be able to these things on my own as a software engineer.
So if you are looking for someone to advertise your stuff, reach out to her!

Last but not least, I want to thank the React community. It’s a highly creative and innovative yet
friendly place that makes it possible for everyone to build effortless applications. The community
is supportive and welcoming to everyone. It provides every newcomer with useful resources to get
started. I hope I can contribute to this community as well by writing about these things. One of
my objective is to broaden the diversity among developers by providing free learning material to
minorities. Reach out to me, if you are from an underrepresented group, to get a free copy of this
book.

Thank you.

183https://www.small-improvements.com/
184https://dribbble.com/charisseysabel
185https://www.iamliesa.com/

https://www.small-improvements.com/
https://dribbble.com/charisseysabel
https://www.iamliesa.com/
https://www.small-improvements.com/
https://dribbble.com/charisseysabel
https://www.iamliesa.com/

Last but not Least 248

Thank You

Foremost, I want to thank you for reading the book or taking the full blown course. My biggest hope
is that you had a great learning experience with the material. You should feel empowered now to
build your own application that uses any kind of state management. Reach out to me, if you have
any kind of feedback. I strive to go more in the direction of education which is why I depend on
your feedback.

You can visit my website186 to find more topics about software and web development. If you like to
get any updates, feel free to subscribe to them187. The updates will only be quality content and never
spam. In addition, I can recommend to read again about the further learning paths from one of the
recent chapters. Otherwise grab a friend of yours or join the Slack Group to teach others about state
management.

In the end, if you liked the learning experience, I hope you will recommend the book to other people.
Share it if you liked it. Just think about people in your life who want to learn more about this topic,
regardless of using React, React Native, Angular or Vue, and share the book with them. I believe,
developers need to align on this topic in order to get to the next level of modern applications.

Thank you for reading the book. Robin

186https://www.robinwieruch.de/
187https://www.getrevue.co/profile/rwieruch

https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch

Last but not Least 249

Copyright

• Â© 2017 Robin Wieruch
• Website: https://www.robinwieruch.de/
• Course: https://roadtoreact.com/

	Table of Contents
	Introduction
	About the Author
	Requirements
	React
	Editor and Terminal
	Node and NPM

	FAQ
	How to read the Book

	Local State Management
	Definitions
	Pure Functions
	Immutability
	State

	Local State in React
	Stateful and Stateless Components
	Props vs. State
	Form State
	Controlled Components
	Unidirectional Data Flow

	Scaling Local State in React
	Lifting State
	Functional State
	Higher Order Components
	The Provider Pattern

	Persistence in State
	Local Storage
	Caching in State

	Transition to Sophisticated State
	The Controversies of Local State Management
	The Flaw of Local State Management

	Redux
	Basics in Redux
	Action(s)
	Reducer(s)
	Store
	Hands On: Redux Standalone

	Advanced Actions
	Minimum Action Payload
	Action Type
	Action Creator
	Optional Payload
	Payload Structure
	Hands On: Redux Standalone with advanced Actions

	Advanced Reducers
	Initial State
	Nested Data Structures
	Combined Reducer
	Clarification for Initial State
	Nested Reducers
	Hands On: Redux Standalone with advanced Reducers

	Redux in React
	Connecting the State
	Hands On: Bootstrap React App with Redux
	Hands On: Naive Todo with React and Redux

	Connecting the State, but Sophisticated
	Hands On: Sophisticated Todo with React and Redux
	Hands On: Connecting State Everywhere

	Redux State Structure and Retrieval
	Middleware in Redux
	Immutable State
	Normalized State
	Selectors
	Plain Selectors
	Denormalize State in Selectors
	Reselect

	Hands On: Todo with Advanced Redux
	Hands On: Todo but more Features

	Asynchronous Redux
	Redux Thunk
	Hands On: Todo with Notifications

	Asynchronous Actions Alternatives
	Redux Saga
	Hands On: Todo with Redux Saga

	Redux Patterns, Techniques and Best Practices
	Using JavaScript ES6
	Naming Conventions
	The Relationship between Actions and Reducers
	Folder Organization
	Technical Folder Organization
	Feature Folder Organization
	Ducks

	Testing
	Error Handling

	(React in) Redux FAQ
	Redux vs. Local State
	View vs. Entity State
	Accidental vs. Planned State

	Redux State as Architecture
	Hands On: Hacker News with Redux
	Part 1: Project Organization
	Part 2: Plain React Components
	Part 3: Apply Styling
	Part 4: Archive a Story
	Part 5: Introduce Redux: Store + First Reducer
	Part 6: Two Reducers
	Part 7: First Action
	Part 8: First Selector
	Part 9: Re-render View
	Part 10: First Middleware
	Part 11: First Action Creator
	Part 12: Connect React with Redux
	Part 13: Lift Connection
	Part 14: Interacting with an API
	Part 15: Separation of API
	Part 16: Error Handling
	Part 17: Testing
	Final Words

	Redux Ecosystem Outline
	Redux DevTools
	Connect Revisited
	Concise Actions and Reducers
	React Redux Libraries
	Routing with Redux
	Typed Redux
	Server-side Redux

	MobX
	Introduction
	Observable State
	Autorun
	Actions
	Computed Values

	MobX in React
	Local State
	Scaling Reactions
	Inject Stores
	Advanced MobX
	Other Reactions
	Be Opinionated

	Alternative to Redux?

	Last but not Least
	Further Learning Paths
	Never stop Learning
	Acknowledgements
	Thank You
	Copyright

