7/1/2015 Week 1 : Introduction

Week 1 : Introduction

This week we will look into a brief history of JavaScript games, and present the basic principles we will
find in nearly all video game that uses real-time animation and interaction.

We will see a brief introduction on how to perform real time animation with the HTMLS canvas and
manage different type of user inputs.

Site: Classrooms - Online training for Web developers
Course: HTMLS5 Games - November 2014

Book: Week 1 : Introduction

Printed by: Michel Buffa

Date: Wednesday, 7 January 2015, 8:28 PM

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 1/47

7/1/2015 Week 1 : Introduction

Table of contents

1 History of JavaScript Games

2 JavaScript crash course

3 Elements and APIs that will be useful for writing games
4 The "Game loop"
5 Is this really a course about games ? Where are the graphics ???

6 User interaction and events handling
7 What's next? What is missing?

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 2/47

7/1/2015 Week 1 : Introduction

1 History of JavaScript Games

History of JavaScript Games

People often think that games in the Internet browsers without any plugins are relatively new phenomenon
of web development. It's not true.

SOOO00 BOOS00 It is not the first Web revolution in our history. Just after the Internet
was born, together with Hypertext Markup Language, used for
describing text documents, we’ve got JavaScript - simple script
language with C-like syntax for interacting and changing the structure
of our documents. That was the first time we could move different
elements across our browser's screens. This fact was noticed by Scott
Porter, and back in 1998 he created the first JavaScript game library
with a very original name: 'Game Lib'. He mostly focused on creating
ports of old Nes or Atari games then, using animated gifs, but we can
also find his Video Pool game in which he emulated rotation of a cue
with a sprite of 150 different positions!

HINTENDD Hl 1::::::I]h' [CA INC. During the late 19905

UTE WEWS 1318 ST GOLEFT \ISRIGHT 5B THRT and early 2000s,
popularity of
JavaScript increased and community created a first
'umbrella term' describing a collection of technologies
used together to create interactive and animated web sites
- DHTML (Dynamic HTML). Developers of the DHTML
era' didn't forget about Porter's 'Game Lib', so in a couple
of years Brent Silby presented 'Game Lib 2'. It is still
possible to play lot of games created with that library on

s
his Web site. FH—H-—E*
The DHTML era was a time when JavaScript games were
as good as those made in Flash. Developers made a lot of kA &A‘ o _,_
DOM Librarios useful for Garme Dovel : e P e

ibraries useful for Game Development, like
Beehive by Peter Nederlof with his outstanding Rotatrix
(personally, I think that it is one of the best HTML game EVER), and developed the first really polished
browser games Jacob Sidelin, creator of 14KB Mario created the very first page dedicated to JavaScript

games - http://www.javascriptgaming.com/.

And then, 2005 came. It was 'the year of AJAX'. Even if "TAJAX" just stands for "Asynchronous JavaScript
and XML", it was another 'umbrella term' describing methods, trends and technologies used to create new
kind of web sites - WEB 2.0. Popularization of new JavaScript patterns introduced the ability to create
multiplayer connections or even true emulators of old computers. Best examples of this time were
“Freeciv” by Andreas Rosdal - port of Sid Meier Civilization, and Sarien.net by Martin Kool, emulator of
old Sierra games.

g

And then came a new era in the history of Internet. It is called ' HTML5"!

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 3/47

7/1/2015 Week 1 : Introduction

HTML

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 4/47

7/1/2015 Week 1 : Introduction

2 JavaScript crash course

Introduction

This course is about HTMLS5 games, and it will rely on several JavaScript APIs: the canvas API for
drawing, the requestAnimationFrame API for animating, the DOM API for dealing with inputs and user
interaction, the Web Audio API for music and sound effects, and also on the WebSocket API for adding
multi-participant features to the games. We might also use some APIs relevant to HTMLS5 persistence or
Ajax if we need to load/save resources locally or remotely. Some games might also use the
orientation/acceleration or geolocation APIs introduced by HTMLS.

So yes, you will have to use JavaScript, . We indicated that "basic knowledge" in JavaScript is mandatory
for this course, however in case we did not practice this langage for a long time, or in case you would like
to enhance your knowledge right now, we wrote this document.

It is not about teaching JavaScript. There are lots of resources available on the Web, and even the W3C
proposes a JavaScript training course that covers JavaScript and jQuery, the popular swiss knife library for
JS developers.

This document will help you to start in good conditions. Remember that one great thing with the W3C
courses is that everybody can help each other. Some of the classmates are really good in JavaScript and are
usually very happy to help others when they encounter difficulties. Of course, I helped students to debug
their JS code...

Michel, your trainer.

External resources

¢ http://www.codecademy.com/de/tracks/javascript-combined

e The book I used to learn JavaScript myself: http://www.wuala.com/lpuums/JavaScript/Object-
Oriented%?20JavaScript%20-%20Stoyan%20Stefanov.pdf?lang=fr

e Mozilla Developper Network has a JS guide too: https://developer.mozilla.org/en-
US/docs/JavaScript/Guide

¢ You might have a look at w3schools.com but beware that this Web site is full of mistakes and untrue
information, see http://w3fools.com/ if you don't believe me!

I also teach JS to my University students: see my JavaScript course slides (in
French): http://mainline.essi.fr/JavaScriptSlides/index.html

Extracts from the forum posts (by students) during the previous version of the course:
Video tutorials at Treehouse which are very slick, this includes a basic Javascript course:

http://teamtrechouse.com/librarv/websites/javascript-foundations

Codecademy is also very good.:

http://www.codecademy.com/tracks/javascript

I've also been through this Udemy video course which was useful for the basics too but maybe not quite so
well structured:

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 5/47

7/1/2015 Week 1 : Introduction

https.//secure.udemy.com/beginning-javascript/

And this Missing Manual book is good for jQuery, with a little bit of beginner JavaScript too:

http://shop.oreilly.com/product/0636920015048.do

1 tend to steer clear of W3Schools but that's just a personal preference, haven't tried a full course from the
start.

Might i add javascript 101 from jquery website :

http://learn.jquery.com/javascript-101/

Also i did followed the codeacademy JS course some months ago it's a very nice introduction for beginners.
I do recommend for those with no JS knowledge as it starts from scratch.

What do you need? How to debug? How to catch errors?

We will not look at the JavaScript syntax here, but more at "JavaScript in the browser", how it works, how
to start writing code, etc.

First of all, you need to find a way to debug your code and see errors.
For that you can use:

e Chrome dev tools (installed by default in Chrome, press F12 to display the dev tool console)

¢ The firebug extension for Firefox (go to the tools/additional modules and use the search dialog for
"firebug", then install it). Once installed, press F12 to open the firebug console

e IE10 comes also with a pre-installed dev tool console (F12 again)

e For other browsers, please look for the related dev. tools

In these tools, you always have a "console tab" where errors will be displayed, or messages of your own
(use the console.log(string) JavaScript function). In the console you can also type any JavaScript command.

Let's look at an example in the web based IDE jsbin.com : http://jsbin.com/ahahoc/2/edit

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset=utf-8 />

5 <title>Web Audio API</title>

6 <script>

7 console.log("Some JavaScript code has been executed");
8 </script>

9 </head>

10 <body>

11 <hl>JavaScript debugging using the dev tool console</hl>
12 </body>

13 </html>

Well, this is the most simple way to add JavaScript code in an HTML page, using the <script>...</script>
element. The code is executed sequentially when the page is loaded: the JavaScript code is executed before
the browser could see the rest of the page, the H1 element, for example, does not exist in the Document

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 6/47

7/1/2015

Week 1 : Introduction

Object Model, and has not yet been displayed when the JavaScript code is executed.

The only line of code we have is console.log("Some JavaScript code has been executed");

This means "display in the JavaScript console the message"... If we open the "console tab" in jsbin.com
(that redirects all console.log() messages), and re-execute the page (just type a space at the end of a line,
this will re-render the page and display the message in the console) we see in green the message in the
console tab:

M Promo HC - micbuff = .m [Mib_bit] x ™1 JavasScript crash cou x/ B Web Audio API - JS

<« C A | [jsbin.com/ahahoc/2/edit Q@i O =
E JSBin Addlibrary Share HTML CSS JavaScript Console = Output E MichelBuffa - Help
HTML ~ Console Output |
<IDOCTYPE html> "Some JavaScript code has Runwith JS | - Auto-run JS /1 A
<html>
been executed" *
<head> JavaScript |
<meta charset=utf-8 /> - . . |
<title>Web Audio API</title> debugglng USlng
<script>
console. log("Some the deV tOOl

JavaScript code has been
executed");
P console |
< /head:
<body>
<hl>JavaScript debugging |
using the dev tool
console</hl>
</body>
</html>|

We can also use the "real dev tool console", and for this I recommend to run the application in a single
window, not in the jsbin editor. Press the black arrow on the top right of the output window, this will render
the page as a standalone Web page, then press F12. You should see:

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 7/47

7/1/2015 Week 1 : Introduction

S a L a

M Promo H x | m [Mibbit x Y M JavasScri x \ﬁ Web Auc x 7 Bl Web Auc x Y} —'—
C' # [jsbin.com/ahahoc/2 Q0= © =

JavaScript debugging using the dev tool
console

Elements Rescurces Metwork Sources Timeline Profiles Audits | Conzole |

Some JavaScript code has been executed 2:11

¥

B = qQ & <topframe> v <page context: v () | Emors Wamings Logs Debug o]

'l

A Presentation.pptx T =B 1thry.PortableP...rar i ¥ Afficher tous les téléchargements... %

Ok, now, let's make an error, change console.log() into consollle.log(). Let's see what happens:

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 8/47

7/1/2015 Week 1 : Introduction

= — g X I
M Prom: x \ m [Mib! x ¥ TnJavast x | Bl Web. x \ B{lWeb, x ¥ i Web, x {1} L

€« C A [3jsbin.com/ahahoc/2/edit Q@i O =

EJSEin Add library Share HIML C55 JavaScript Console | Output

HTML ~ — Console

e

<!DOCTYPE html> "Some JavaScript code has been

<html> executed"

<head>

<meta charset=utf-8 /> X Uncaught ReferenceError: consollle 1s

<title>Web Audio L_» not defined

API</title> o
<script> ‘ﬂ‘#,,,,ﬂﬂﬂﬂ‘)

consollle. log("Some
JavaScript code has
been executed");
</script>
< /head>
<body>
<hl>JavaScript
debugging using the
dev tool console</hl>

1

</body>
</html> b
A Presentation.pptx T =B 1thry.PortableP...rar i ¥ Afficher tous les téléchargements... %

And if we run it standalone and use the dev tool console:

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 9/47

7/1/2015 Week 1 : Introduction

C f | [jshin.com/ahahoc/2 Q@@= © =

JavaScript debugging using the dev tool

console Click to show

the source
code, and the

Elements Resocurces MNetwork Sources Timeline Profiles Audits | I n e t h at

& ®Uncaught ReferenceError: consollle is not defined Caused ‘[he

>
error -

And if we click on the line number in the right, the dev tool shows the source code centered on the line that
caused the error:

=]
=
[

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 10/47

7/1/2015 Week 1 : Introduction

MPro x Y m [Mi x ' Thlave x ﬁﬁ_lj_‘l.;'l.n’«\%: ps
C' # [jsbin.com/ahahoc/2 Q@@= O

JavaScript debugging using the dev tool
console

Elements Resources Metwork | Sources | Timelne Profies Audits Console

o n | T b
» Watch Expressions
| w Call Stack

|E

<html>

1=
Created using jsbin.com = | ¥ Scope Variables
Ecurce can be edited via http:_-".a'jsbin.r:crr_-‘ahahcc,-'z_-'edi| ¥ Breakpoints

<head> - Mg Bregkpoints

<meta charset=utf-3 /> :

<title>ieb Audio API</title> Lt
<scripts » XHR Breakpoints

consollle.log("Some JavaScript code has been execute P Fvent Listener Breakpoints
/script
e 2 » Workers

=

1
2
3
4
5
B
7
8
9
a8
1
2
3
4

e

i
i

=
o

o1 &

o Presentation.pptx i @lthw.PDrtahle.P..,.rar i ¥ Afficher tous les téléchargements.. %

Without such tools, debugging JavaScript code is impossible. So you need to look at some basic tutorials on
how to use Chrome Dev Tools, Firebug for Firefox or IE dev tools, etc... the way they work differ one from
another but the principles remain the same.

Quick reminder of basic JavaScript

I assume that you already have an experience in JavaScript & HTML, so I will remind just couple of most
important things you have to remember about during the course:

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 11/47

7/1/2015 Week 1 : Introduction

Methods are just the properties with functions assigned to them.

Here is a general example of a simple object:

var AwesomeObject = {
propertyl: 'value',
method: function(){
alert('method!");
}
}

Or another example:

var michel = {
name: 'Michel Buffa',
getName: function() {
return name;

}
}

Almost everything in JS is an object. So you can add properties to
functions, etc.

Here are some examples:

var foo = function(){
alert('"I'm in the function');

}

foo.bar = function(){
alert('all your object are belong to us');

}

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 12/47

7/1/2015

Week 1 : Introduction

There is no private scope in JavaScript, except the function scope

Functions can use global variables inside them:
var foo =1; // global

var f = function(){
alert('output: ' + foo); //output: 1

}

alert('output: ' + foo); //still 'output: 1'
But if you declare the variable inside the function, it will be visible only there.

var f2 = function(){
var foo =2;
alert('output: ' + foo);

}

alert('output: ' + foo); //ReferenceError: foo is not defined
So to construct objects with private functions, we will use a pattern like this:

var NameOfThePseudoClass = function(){
// private variables
var privateVarl =0,
privateVar2 =1;

// now private functions we need
var privateMethod1 = function(args){
//leverything we need to be private in here

}

/l actions that need to be executed on start are located here (‘constructor like behavior'), for
example
/I call privateMethod1(...); or whatever...

// public methods, visible outside of this function
var publicMethod = function(){
return privateVarl + privatevar2;

}

/l returning the object with some kind of 'public API', only with methods we want to use outside
return {
publicMethod : publicMethod //publicName : name of the function inside our scope

}
}

//lusage : create an instance
var instance = new NameOfThePseudoClass();

/I Call a public method on the instance
instance.publicMethod();

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

13/47

7/1/2015 Week 1 : Introduction

We can manipulate the elements of the page structure using DOM
techniques

In order to change or access some attributes on elements in the DOM of the HTML document, you first
need to select the element(s), and then use JavaScript methods and the JavaScript DOM API to manipulate
the element's attributes. You can also change the hierarchy by moving/adding/creating DOM elements.
HTMLS5 added also new methods to the standard DOM level 2 JavaScript API, that will be studied in week
5 of the HTMLS course.

If this is our HTML document:

1 <head>

2 <style>

3 #spanl {

4 width: 100px;

5 height: 100px;

6 background-color: #BADASS5;
7 }

8 </style>

9 </head>

10 <body>

11
12 </body>

To change the background color of the span element, here is one way to do it:

var spanElement = document.getElementByld('spanl’);
spanElement.style.backgroundColor = "#FF00FF';

REMEMBER! If you want to set or get number value, think about the units:

spanElement.style.width = 100; /WRONG!
spanElement.style.width = '100px'; //GOOD!

var width = spanElement.style.width; /WRONG! It will return '100px' string
var width = parselnt(spanElement.style.width); /WRONG!

In the above example, you have to provide the base of the numeric system you want to use - for example
parselnt('071") returns 57, because of the leading '0' - it thinks that the number is in OCT system. Here is
how to correctly do the parselnt(...)

var width = parselnt(spanElement.style.width, 10); /GOOD! It will return number 100

JavaScript code that selects DOM elements must be called after the
page has been completely loaded

Indeed, when an HTML page is loaded, the JavaScript code is executed sequentially.

<canvas id="mycanvas'>.....</canvas>

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 14/47

7/1/2015 Week 1 : Introduction
<script>
var ¢ = document.getElementByld(""'mycanvas''); var coontext = c.getContext('2d');
</script>

This will work, because the <canvas> is declared before the JavaScript code is executed.
<script>

var ¢ = document.getElementByld(""'mycanvas''); var coontext = c.getContext('2d');
</script>
<canvas id="mycanvas'>.....</canvas>

This will not work, as ¢ will be undefined.

This can lead to some inter-blocking techniques, and having to think at the location of the JavaScript code
is really annoying. The solution is to run the code that access DOM elements in a function that is executed
only once the page is completely loaded and the DOM ready.

There are multiple ways to do this, the most common one is to add a "onload" callback on the body element
or to make the document listen to the "load" DOM event. Here is an example:

GOOD:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset=utf-8 />

5 <title>This is a test</title>

6 <script>

7 function init() {

8 var ¢ = document.getElementById('mycanvas');
9 var ctx = c.getContext('2d');

10 ctx.fillRect(0, 0, 200, 200);

11 }

12 </script>
13 </head>
14 <body onload='init();'>

15 <canvas id='mycanvas' width='200' height='200'></canvas>
16 </body>
17 </html>

BAD (the next example is the bad version of the previous one):

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset=utf-8 />

5 <title>This is a test</title>

6 <script>

7 // mycanvas is defined AFTER this code is executed
8 var ¢ = document.getElementById('mycanvas');

9 var ctx = c.getContext('2d');

10 ctx.fillRect (0, 0, 200, 200);

11 </script>

12 </head>

13 <body>

14 <canvas id='mycanvas' width='200' height='200'></canvas>

15 </body>

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 15/47

7/1/2015 Week 1 : Introduction

16 </html>
Other methods for selecting DOM elements

document.getElementsByTagName() - returns collection (indexed like an Array) of tags (like 'div' or
'span')
document.getElementsByClassName() - like before, but only with a given class.

Also, if an attribute is spelled with two words (like 'background-image'), you can access it from JavaScript
using CamelCase notation ('backgroundImage'). Here is a full list of JavaScript references to CSS2

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

properties:

CSS Property JavaScript Reference
background background
background-attachment backgroundAttachment
background-color backgroundColor
background-image backgroundlmage
background-position backgroundPosition
background-repeat backgroundRepeat
border border
border-bottom borderBottom
border-bottom-color borderBottomColor
border-bottom-style borderBottomStyle
border-bottom-width borderBottomWidth
border-color borderColor
border-left borderLeft
border-left-color borderLeftColor
border-left-style borderLeftStyle
border-left-width borderLeftWidth
border-right borderRight
border-right-color borderRightColor
border-right-style borderRightStyle
border-right-width borderRightWidth
border-style borderStyle
border-top borderTop
border-top-color borderTopColor

16/47

7/1/2015

Week 1 : Introduction

border-top-style borderTopStyle
border-top-width borderTopWidth
border-width borderWidth
clear clear
clip clip
color color
cursor cursor
display display
filter filter
font font
font-family fontFamily
font-size fontSize
font-variant fontVariant
font-weight fontWeight
height height
left left
letter-spacing letterSpacing
line-height lineHeight
list-style listStyle
list-style-image listStyleImage
list-style-position listStylePosition
list-style-type listStyleType
margin margin
margin-bottom marginBottom
margin-left marginLeft
margin-right marginRight
margin-top marginTop
overflow overflow
padding padding
padding-bottom paddingBottom
padding-left paddingLeft
padding-right paddingRight

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

17/47

7/1/2015 Week 1 : Introduction

padding-top paddingTop
page-break-after pageBreakA fter
page-break-before pageBreakBefore
position position
float styleFloat
text-align textAlign
text-decoration textDecoration
text-decoration: blink textDecorationBlink

text-decoration: line-through | textDecorationLineThrough

text-decoration: none textDecorationNone
text-decoration: overline textDecorationOverline
text-decoration: underline textDecorationUnderline
text-indent textIndent
text-transform textTransform
top top
vertical-align verticalAlign
visibility visibility
width width
z-index zIndex

If you want to create a new element, and append it to existing one,
use this similar method:

var newElement = document.createElement('div');
spanElement.appendChild(newElement);

Other helpful tools:

1. JsLint - code quality tool. Paste your code inside, and it will show you where you made errors.

2. JsBeautifier - paste non formated JavaScript code in there to make it more readable. It will help you
during this course, because sometimes the snippets I create display without indents.

3. JsFiddle - sandbox for testing fragments of code, like jsbin.com

4. JsPerf - performance playground. If you don't know it your solution is fast enough, you can test it
there. It has also lot of examples made by other developers: JsPerf Test cases.

5.

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 18/47

7/1/2015 Week 1 : Introduction

3 Elements and APIs that will be useful for writing
games

New HTMLS elements useful in game
development

Drawing

<canvas>

The <canvas> i1s a new HTML element described as "a resolution-
dependent bitmap canvas which can be used for rendering graphs, game
graphics, or other visual images on the fly." It's a rectangle included in your
page where you can draw using scripting with JavaScript. It can for
instance be used to draw graphs, make photo compositions or do
animations. This element consists of a drawable region defined in HTML
code with height and width attributes.

You can have multiple canvas elements on one page, even stacked one onto
another, like transparent layers. Each will be visible in the DOM tree and
has it's own state independent of the others. It behaves like regular DOM
element.

The canvas has a rich JavaScript API for drawing all kinds of shapes, we
can draw wireframe of filled shapes and set several properties such as color, line width, patterns, gradients,
etc. It also supports transparency and pixel level manipulations. Today it is supported by all browsers, on
desktop or mobile phones, and on most devices it will take advantage of hardware acceleration.

It's for sure most important new element in the HTMLS spec from game developer's point of view, so we
will discuss it with more details later, in next lessons.

Animating

requestAnimationFrame API

The requestAnimationFrame API targets 60 frames/s animation in canvases. This API is quite simple and
comes also with a high resolution timer. Animation at 60 frames/s is often easy to obtain with simple 2D
games, on major desktop computers. This is the preferred way for performing animation as the browser will
take care of not performing the animation when the canvas is not visible, thus saving up cpu.

Videos and animated textures

The <video> element

HTMLS5 video is an element introduced in the HTMLS5 specification for the purpose of playing videos or
movies, partially replacing the object element. Usability of the element is lowered because of lack of
agreement between browser vendors as of which video formats should be supported. The API is close to the
one of the <audio> element.

By combining the capabilities of the <video> element with a canvas, it's possible to manipulate video data

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 19/47

7/1/2015

Week 1 : Introduction

in real time to incorporate a variety of visual effects to the video being displayed, on on
the contrary, to use images from videos as "animated textures" on graphic objects.

Audio (streamed audio and real time sound effects)

The <audio> element

<audio> is a HTML element which was introduced to give a
consistent API for playing streamed sounds in browsers. File
format support differs from one browser to another, but MP3 works
on nearly all browsers today. Unfortunately the <audio> tag is only
for streaming compressed audio, so it consumes cpu resources, and
is not adapted for sound effects where you would like to change the
playing speed or add real time effects like reverb or doppler. For
this we will prefer the new Web Audio API.

The Web Audio API

This is a 100% javascript API designed for working in real time
with uncompressed sound samples or for generating procedural
music. Sound samples will need to be loaded in memory and decompressed prior to being used. Up to 12
sound effects are provided natively by browsers that supports the API (all major ones except IE, but support
has been announced by Microsoft for IE12).

Interacting

User inputs will rely on several APIs, some are well established like the DOM API that we
will use for keyboard, touch or mouse inputs. There is also a working draft GamePad API
that is already implemented by some browsers. We will look into it also in that course.

Multi Participant features

WebSockets

Using the WebSockets technology (that is not in the HTMLS5
specification but comes from WebRTC) you can create two-way
communication sessions between several browsers and a server. The
WebSocket API provides means for sending messages to a server and
receive event-driven responses without having to poll the server for a

ly.
feply Server

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 20/47

7/1/2015

Week 1 : Introduction

4 The "Game loop"

Different implementations of the 'Main Game

Loop'

Introduction

The "game loop" is the main component of any game. It separates the
game logic and the visual layer from a user's input and actions.

Traditional applications respond to user input and do nothing without
it - word processor formats text as a user types. If the user doesn't type
anything, the word processor is waiting for an actions.

It looks a way different in games: a game must continue to operate
regardless of a user's input.

The game loop allows this - it is computing events in our game all the
time. Even if the user doesn’t make any actions, the game will move
the enemies, resolve collisions, play sounds and draw graphics as fast
as possible.

There exists different ways to perform animation with JavaScript.
Let's have a quick look at them.

Performing animation using the JavaScript
setInterval(...) function

e Syntax: setInterval(function, ms);

DoB
while (A = TRUE)
End While

TRELUE

FALSE

C)

The setInterval function calls a function or evaluates an expression at specified intervals of time (in
milliseconds), and returns a unique id of the action. You can always stop that by calling the

clearInterval(id) function with the interval identifier as an argument.

(2)

Example you can try it online at: http://jsbin.com/yuhule/3/edit (open the html, javascript and output tabs):

JavaScript ~ Output Run with JS

var addStarToTheBody = function(){ g O s
document.body.innerHTML +=

Nkl |
3

}; ! Adds a * every
’ 200ms

//this will add one star to the
document each 200ms (1/5s)
setInterval(addStarToTheBody,
200);

HTML CSS JavaScript Console Output = Account

Auto-r

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

21/47

7/1/2015

Week 1 : Introduction

Here is the source code:

var addStarToTheBody = function(){
document.body.innerHTML += "*";

}i

//this will add one star to the document each 200ms (1/5s)

1
2
3
4
5
6 setInterval(addStarToTheBody, 200);
7

NOTE: Even if it can evaluate the expressions, you should never do this. Use anonymous functions instead.

WRONG:

1 setInterval(’addStarToTheBody()’, 200);
2 setInterval(‘document.body.innerHTML += “*7;' 200);

GOOD:

1 setInterval(function(){

2 document.body.innerHTML += “*";
3 }, 200);

REMEMBER: You should avoid evaluations (providing strings to eval(), setlnterval() & setTimeout()
functions). You can achieve the same effect in better ways. ALWAYS!

Using setTimeout() instead of setInterval()

One thing you should always remember about using setlnterval - if we set number of milliseconds at let’s
say 200, it will call our game loop function EACH 200ms, even if the previous one is not yet finished. Thats
why we can use another function:

¢ Syntax: setTimeout(function, ms);

This function works like setInterval with one little difference - it calls your function AFTER given amount
of time.

Example of use: http://jsbin.com/zudebaxoze/3/edit (open javascript, console and output tabs).

var addStarToTheBody = function(){
document.body.innerHTML += "*";
// calls again itself AFTER 200ms
setTimeout (addStarToTheBody, 200);

// calls the function AFTER 200ms
setTimeout (addStarToTheBody, 200);

1
2
3
4
5 };
6
7
8
9

This example will work like that one from the previous example. It is a way better, because the timer waits
for the function to finish everything inside before calling it back again.

For several years, setTimeout used to be the best and most popular JavaScript implementation of game

loops. Till Mozilla presents the requestAnimationFrame API and it became the reference W3C standard
API for game animation.

Using the requestAnimationFrame API

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 22/47

7/1/2015 Week 1 : Introduction

When you use timeouts or intervals in your animation, the browser doesn’t have any information about
your intentions - do you want to repaint the DOM structure ora canvas during every loop? Or maybe you
Jjust want to make some calculations or requests a couple of times a second? Because of that, it is really
hard for the browser’s engine to optimize your loop.

And since you want to repaint your game (move the characters, animate sprites, etc) on each frame, Mozilla
and other contributors/developers proposed a new approach they called requestAnimationFrame.

It will help your browser to optimize all the animations on the screen, no matter if you use Canvas, Dom or
WebGL. Also, if you're running the animation loop in a browser tab that is not visible, the browser won't
keep it running.

Basic usage, online example at: http://jsbin.com/gixepe/2/edit

window.onload = function init() {
// called after the page is entirely loaded
requestAnimationFrame (mainloop) ;

}i

function mainloop(time) {
document.body.innerHTML += "=*";

// call back itself every 60th of second
requestAnimationFrame (mainloop) ;

H O WO JOoU & WN

=

}

Notice that calling requestAnimationFrame(mainloop) at line 10, "asks the browser to call the mainloop
function every 16,6 ms", this corresponds to 1/60th if a second. This target may be hard to reach, the
animation loop content may take more than that, or the scheduler may be a bit late or in advance.
Many"real action games" perform what we call "time based animation", we will study this later in the
course... but for this, we need an accurate timer that will tell us the elapsed time tween each animation
frames. Depending on this time we can compute the distances each object on the screen must achieve in
order to move at a given speed, independently of the cpu or gpu of the computer or mobile device that is
running the game.

The timestamp parameter of the mainloop function is exactly useful for that: it gives a high resolution time.

Notice that "old browsers" implemented some prefixed, experimental versions of the API and you might
encounter in tutorials on the web some piece of code that use requestAnimationFrame with a polyfill that
will ensure the examples work on any browser, including the ones that do not support this API at all (falling
back to setTimeout)

The most famous polyfill has been written by Paul Irish from the jQuery team. He wrote this polyfill to
simplify the usage of requestAnimationframe in different browsers:

// shim layer with setTimeout fallback

window.requestAnimFrame = (function(){

return window.requestAnimationFrame ||

window.webkitRequestAnimationFrame | |

window.mozRequestAnimationFrame | |

window.oRequestAnimationFrame | |

window.msRequestAnimationFrame | |

function(/#* function */ callback, /* DOMElement */ element){
window.setTimeout (callback, 1000 / 60);

H O WVWoOJOoOU b WN

=

D Os;

So according to our last example, it will look like this using requestAnimationFrame:

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 23/47

7/1/2015 Week 1 : Introduction

1 // shim layer with setTimeout fallback
2 window.requestAnimFrame = (function(){
3 return window.requestAnimationFrame ||
4 window.webkitRequestAnimationFrame ||
5 window.mozRequestAnimationFrame | |
6 window.oRequestAnimationFrame ||
7 window.msRequestAnimationFrame | |
8 function(/#* function */ callback, /#* DOMElement #*/ element){
9 window.setTimeout (callback, 1000 / 60);
10 };
11 }) ()
12
13 window.onload = function init() {
14 requestAnimFrame (mainloop) ;
15 };
16
17 function mainloop(time) {
18 document.body.innerHTML += "*";
19
20 // call back itself every 60th of second
21 requestAnimFrame (mainloop) ;
22}
23

Notice that this polyfill defines a function named requestAnimFrame (instead of the standard
requestAnimationFrame).

As today, the support for the standard API is very good with modern browsers, we will not use this polyfill
in our examples. If you would like to target also "old browsers", just adapt your code to this polyfill, it's just
a matter of changing two lines of code and inserting the JS polyfill.

requestAnimationFrame & - cr Global 83.36%

; ' : : unprefixed: B81.63%
API allowing a more efficient way of running script-based

animation, compared to traditional methods using timeouts.

{ttrl‘m‘l:‘ﬂl;nﬂi Usage relative Show a

Android Chrome for

IE Firefox Chrome Safari Opera iOS Safari* OperaMini* growcer* Android

(WU [B U WY

—
L

32

(8]

—
- I N
~ i | [l =

-
=
L
=]
I
o

—
—
w %] L
I~

o

L
=~ LR
P | Pt [

.

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 24/47

7/1/2015 Week 1 : Introduction

RequestAnimationFrame support (November 2014)

A Game Framework squeletton that uses requestAnimationFrame

A game framework squeletton that uses requestAnimationFrame

Here is a (very) small squeletton:

1 var GF = function(){

2

3 var mainLoop = function(time) {

4 //main function, called each frame
5 requestAnimationFrame (mainLoop) ;

6 }i

7

8 var start = function(){

9 requestAnimationFrame (mainLoop) ;
10 }i
11
12 //our GameFramework returns a public API visible from outside its scope
13 return {
14 start: start
15 }i
16 };

With this squeletton it's very easy to create a new game instance:

var game = new GF();

// Launch the game, start the animation loop etc.
game.start();

= w N

Let's put something into the mainLoop function, and check if it works.

Ty this online example with a new mainloop: http://jsbin.com/kafehi/3/edit (open javascript and output
tabs). It should display at 60 frames/s a random number right in the body of the document. We're far from a
real game yet, but we're improving our game engine :-)

var mainLoop = function(time){
//main function, called each frame
document.body.innerHTML = Math.random();

// call the animation loop every 1/60th of second
requestAnimationFrame (mainLoop) ;

}i

0 o0 Ul WDN

Now we need to count frames per seconds.

That's a classic: every game need to have a FPS measuring function. The principle is simple: count the time
elapsed by adding deltas in the mainloop. If the sum of the deltasis greater or equal to 1000, then 1s
elapsed. If at the same time we count the number of frames that have been drawn, then we have the number
of frames per second. Remember it should be around 60 frames/second.

Here is the code we added to our game engine, for measuring FPS (try it
online: http://jsbin.com/kafehi/5/edit)

1 // vars for counting frames/s, used by the measureFPS function
2 var frameCount = 0;

3 var lastTime;

4 var fpsContainer;

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 25/47

7/1/2015 Week 1 : Introduction

5 var fps;
6
7 var measureFPS = function(newTime) {
8
9 // test for the very first invocation
10 if(lastTime === undefined) {
11 lastTime = newTime;
12 return;
13 }
14
15 //calculate the difference between last & current frame
16 var diffTime = newTime - lastTime;
17
18 if (diffTime >= 1000) {
19 fps = frameCount;
20 frameCount = 0;
21 lastTime = newTime;
22 }
23
24 //and display it in an element we appended to the
25 // document in the start() function
26 fpsContainer.innerHTML = 'FPS: ' + fps;
27 frameCount++;
28 }i
29

And we will call the function from inside the animation loop, passing it the current time, given by the high

resolution timer that comes with the requestAnimationFrame API:

var mainLoop = function(time){
//main function, called each frame
measureFPS (time) ;

// call the animation loop every 1/60th of second
requestAnimationFrame (mainLoop) ;

}i

0 o0 U WDN

And the DIV element used to display FPS on the screen is created in this example by the start() function:

var start = function(){
// adds a div for displaying the fps value
fpsContainer = document.createElement('div');
document.body.appendChild(fpsContainer);

requestAnimationFrame (mainLoop) ;

}i

OO0 UL WDN

Hack : achieving more than 60 frames/s ? It's possible but avoid except in private hackers' circles !

Hack: achieving more than 60 frames/s ? It's possible but avoid

except in private hackers' circles !

We know also methods of implementing loops in JavaScript and achieving even more than 60fps (this is the

limit using requestAnimationFrame).

My favorite hack uses onerror callback on element like this:

1 function loop(callback) {

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

26/47

7/1/2015

var img = new Image;
img.onerror = callback;

u s wN

Week 1 : Introduction

img.src = 'data:image/png,' + Math.random();

What we are doing in here, is creating new Image on each frame, and providing invalid data as a source of

the image. The Image then cannot be displayed properly, so the browser calls the onerror event handler.

Funny hey, you can try this and check the number of FPS displayed

We just changed the mainLoop to this code:

: http://isbin.com/temohe/2/edit

var mainLoop = function(){

measureFPS(+(new Date()));

var img = new Image();
img.onerror = mainLoop;

H O WVWoLOJoOU b WwN

=

img.src = 'data:image/png,’

//main function, called each frame

// call the animation loop every LOTS of second

+ Math.random();

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

27/47

7/1/2015

5 Is this really a course about games ? Where are

Week 1 : Introduction

the graphics ???

Calm down, we will study in details how to draw in the HTMLS5 canvas. So far we just played with "basic
concepts", but we can see you can't wait to draw something, and move shapes on the screen :-)

Let's see rapidly the basic concepts with the canvas, we will look at them deepier the next week. Today, we
will just have "a taste of the HTMLS5 canvas".

HTMLS canvas basic usage

Online example: draw a monster in a canvas. You can try it online at: http://jsbin.com/pagipi/2/edit

HTML code (declaration of the canvas):

W ~JOoU s WN -

o

10
11
12

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>JS Bin</title>
</head>
<body>

<canvas id="myCanvas" width="200" height="200"></canvas>

</body>
</html>

The canvas declaration it as line 9. Give it a width and a height, but unless you add some CSS properties,

you will not see it on the screen: it's transparent!

CSS to reveal the canvas:

1
2
3

canvas {

}

border: 1px solid black;

And here is a good practice on how to use the canvas:

1. In a function called AFTER the page is fully loaded (and the DOM ready), get a pointer to the canvas

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

28/47

7/1/2015 Week 1 : Introduction

node in the DOM,

2. Then get a 2D graphic context for this canvas (the context is an abject we will use to draw on the
canvas, to set global properties like color, gradients, patterns, line width etc...

3. Then only draw something. And do not forget to use global variables for the canvas and context
objects. I also recommend to keep somewhere the width and height of the canvas. This might be
useful later.

4. Draw something.

Here is the JavaScript code that corresponds to this good practice:

1 // useful to have them as global variables
2 var canvas, ctx, w, h;

3

4

5 window.onload = function init() {

6 // called AFTER the page has been loaded
7 canvas = document.querySelector("#myCanvas");
8

9 // often useful

10 w = canvas.width;

11 h = canvas.height;

12

13 // important, we will draw with this object
14 ctx = canvas.getContext('2d');

15

16 // ready to go !

17 drawMyMonster () ;

18 };

19
20 function drawMyMonster() {
21 // draw a big monster !
22 // head
23 ctx.strokeRect (10, 10, 100, 100);
24
25 // eyes
26 ctx.fillRect (30, 30, 10, 10);
27 ctx.fillRect (75, 30, 10, 10);
28
29 // nose

30 ctx.strokeRect (55, 50, 10, 40);

31

32 // mouth

33 ctx.strokeRect (45, 94, 30, 10);

34

35 // teeth

36 ctx.fillRect (48, 94, 10, 10);

37 ctx.fillRect (62, 94, 10, 10);

38 }

In this small example we used the context object to draw a monster using the default color (black) and
wireframe and filled modes:

o ctx.fillRect(x, y, width, height): draw a rectangle whose top left corner is at (x, y) and whose size is
specified by the width and height parameters.
e ctx.strokeRect(x, y, width, height): same but il wireframe mode.

Moving more easily the monster from the previous example

In the drawMonster() function, everything is hardcoded, but how could we draw easily this monster
somewhere else? The answer is: use 2D geometric transformation like translate, rotate, scale, etc... the
context object provides such methods. We will look at them in details the next week. So far, we will just
use the translate(x y) method. And if we change the coordinate system (this is what a call to translate does),
it is always a good practice to save the previous context when entering a function that may change it, and

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 29/47

7/1/2015

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

Week 1 : Introduction

restore it at the end of the function.

So here is our new version of the drawMonster function. We added two parameters for specifying the (x, y)
position of the monster:

1 function drawMyMonster(x, y) {

2 // draw a big monster !

3 // head

4

5 // save the context

6 ctx.save();

7

8 // translate the coordinate system, draw relative to it
9 ctx.translate(x, y);

10

11 // (0, 0) is the top left corner of the monster.
12 ctx.strokeRect (0, 0, 100, 100);
13

14 // eyes

15 ctx.fillRect (20, 20, 10, 10);
16 ctx.fillRect (65, 20, 10, 10);
17

18 // nose

19 ctx.strokeRect (45, 40, 10, 40);
20
21 // mouth
22 ctx.strokeRect (35, 84, 30, 10);
23
24 // teeth
25 ctx.fillRect (38, 84, 10, 10);
26 ctx.fillRect (52, 84, 10, 10);
27
28 // restore the context
29 ctx.restore();

30 }

And the call to the drawMonster is also a little bit different as we now pass the (x, y) position of the top left
corner of the monster as parameters:

1 // Try to change the parameter values to move
2 // the monster
3 drawMyMonster (10, 10);

You can try this new version (and change the parameters to see the monster
move): http://jsbin.com/pagipi/3/edit

Animate the monster, include it in our game engine...

Ok, now that we know how to move this monster, let's integrate it in our game engine:

Add the canvas to the HTML page,

Add the content of the init function to the start() function of the engine, add a few global variables,
call the drawMonster function from the mainLoop,

Add a random displacement to the X, y position of the monster to see it move...

Do not forget to clear the canvas before drawing again, this is done by the ctx.clearRect(x, y, width,
height) function.

Nk v =

You can try this version online here: http://jsbin.com/kafehi/7/edit

HTML code:

1 <!DOCTYPE html>

30/47

7/1/2015 Week 1 : Introduction

<html>
<head>
<meta charset="utf-8">
<title>JS Bin</title>
</head>
<body>
<canvas id="myCanvas" width="200" height="200"></canvas>
</body>
</html>

O VW oI U s WN

=

JavaScript complete code:

1 // Inits

2 window.onload = function init() {

3 var game = new GF();

4 game.start();

5 }i

6

7

8 // GAME FRAMEWORK STARTS HERE

9 var GF = function(){

10 // Vars relative to the canvas

11 var canvas, ctx, w, h;

12

13 // vars for counting frames/s, used by the measureFPS function
14 var frameCount = 0;

15 var lastTime;

16 var fpsContainer;

17 var fps;

18

19 var measureFPS = function(newTime) {
20
21 // test for the very first invocation
22 if(lastTime === undefined) {
23 lastTime = newTime;
24 return;
25 }
26
27 //calculate the difference between last & current frame
28 var diffTime = newTime - lastTime;
29
30 if (diffTime >= 1000) {
31 fps = frameCount;
32 frameCount = 0;
33 lastTime = newTime;
34 }
35
36 //and display it in an element we appended to the
37 // document in the start() function
38 fpsContainer.innerHTML = 'FPS: ' + fps;
39 frameCount++;
40 }i
41
42 // clears the canvas content
43 function clearCanvas() {
44 ctx.clearRect(0, 0, w, h);

45 }

46

47 // Functions for drawing the monster and maybe other objects
48 function drawMyMonster(x, y) {

49 // draw a big monster !

50 // head

51

52 // save the context

53 ctx.save();

54

55 // translate the coordinate system, draw relative to it
56 ctx.translate(x, y);

57

58 // (0, 0) is the top left corner of the monster.

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

31/47

7/1/2015 Week 1 : Introduction

59 ctx.strokeRect(0, 0, 100, 100);

60

61 // eyes

62 ctx.fillRect (20, 20, 10, 10);

63 ctx.fillRect (65, 20, 10, 10);

64

65 // nose

66 ctx.strokeRect (45, 40, 10, 40);

67

68 // mouth

69 ctx.strokeRect (35, 84, 30, 10);

70

71 // teeth

72 ctx.fillRect (38, 84, 10, 10);

73 ctx.fillRect (52, 84, 10, 10);

74

75 // restore the context

76 ctx.restore();

77 }

78

79 var mainLoop = function(time)

80 //main function, called each frame

81 measureFPS(time);

82

83 // Clear the canvas

84 clearCanvas();

85

86 // draw the monster

87 drawMyMonster (10+Math.random()*10, 1l0+Math.random()*10);
88

89 // call the animation loop every 1/60th of second
90 requestAnimationFrame (mainLoop) ;

91 }i

92

93 var start = function(){

94 // adds a div for displaying the fps value
95 fpsContainer = document.createElement('div');
96 document.body.appendChild(fpsContainer);

97

98 // Canvas, context etc.

99 canvas = document.querySelector ("#myCanvas");
100

101 // often useful

102 w = canvas.width;

103 h = canvas.height;

104

105 // important, we will draw with this object
106 ctx = canvas.getContext('2d');

107

108 // start the animation

109 requestAnimationFrame (mainLoop) ;

110 };

111

112 //our GameFramework returns a public API visible from outside its scope
113 return {

114 start: start

115 };

116 };

117

Notice that we now start the game engine in a window.onload function, only when the page has been
loaded. We also moved 99% of the init() method we wrote in the previous example into the start() method
of the game engine, and added the canvas, ctx, w, h variables as variables global to the game framework
object.

Finally we added a call to the drawMonster function in the mainloop, with some randomness in the
parameters, like that the monster is drawn with an offset between [0, 10] at each frame of animation.

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 32/47

7/1/2015 Week 1 : Introduction
And we clear the canvas content before drawing the current frame content.

If you try the example, you will see a trembling monster. The canvas is cleared + monster drawn at random
positions 60 times per second!

In the next part of this week's course we'll see how to interact with it using the mouse or the keyboard.

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 33/47

7/1/2015

Week 1 : Introduction

6 User interaction and events handling

Input & output: how events work in web

apps & games?
Introduction / event management in JavaScript

There is no input or output in JavaScript. We treat events made by user
as an input, and we manipulate DOM structure as output. Most of the
times in games, we will change state variables of moving objects like
position or speed of an alien ship, and the animation loop will take care
of these variables to move the objects.

’:c‘

et Sge®,
S5 e % e
: .
o “‘ °

Ceiseve
OneY ““_@

LA
In any cases the events are called DOM events, and we use the DOM
APIs to create event handlers.

There are three ways to manage events in the DOM structure. You can
attach event inline in you HTML code like this:

Declare event handlers in the HTML code

‘-‘_“ .‘ \
- &
*\e "

|1 <div id="someDiv" onclick="alert('clicked!')"> content of the div </div>

This is not the recommended way to handle events, even if it's very easy to use. Indeed, It works now, but
it's deprecated and will probably be abandoned in a future. Mixing 'visual layer' (HTML) and 'logic layer'

(JavaScript) in one place is really bad and causes lot of problems during development.
Add an event handler to an HTML element in JavaScript

Here is an example:

1 document.getElementById('someDiv').onclick = function() {
2 alert('clicked!"');
3 1}

This method is ok, but you will not be able to attach several listener functions. If you need to do this, the

preferred version is the next one.
Register a callback to the event listener with the addEventListener method

This is how we can do that

1 document.getElementById('someDiv').addEventListener('click', function() {
2 alert('clicked!");
3 }, false);

Note that the third parameter describes if the callback has to be called during the captured phase. Tt is not

important for now, just set it to false...

The DOM event that is passed to the event listener function

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

34/47

7/1/2015 Week 1 : Introduction

When you create an EventListener and attach it to an element, it will provide an event object as a parameter
to your callback, just like this:

1 element.addEventListener('click', function(event) {
2 // now you can use event object inside the callback
3 }, false);

Depending on the type of event you are listening to, we will use different properties from the event object
in order to get useful information like: "what keys have been pressed down?", "what is the position of the
mouse cursor?", "which mouse button is down?", etc... We will cover now how to deal with the keyboard
and with the mouse. Some experimental APIs like the gamePad API are on their way and supported by
some browsers.

Dealing with key events

This has been sort of nightmare for years, as different browsers had different of handling key events and
key codes (read this if you are found of JavaScript archeology: http://unixpapa.com/js/key.html)...
fortunately it's much better today and we can rely on methods that should work on any browser less than
four years old.

When you listen to keyboard related events (keydown or keyup), the event function will contain the code of
the key that fired the event. Then it is possible to test what key has been pressed or released, like this:

window.addEventListener('keydown', function(event) {
if (event.keyCode === 37) {
//left arrow was pressed

}
}, false);

U s WwWN -

At line 2, 37 is the key code that corresponds to the left arrow. It might be difficult to know how the codes,
so here is a quick reminder...

You can try key codes with this interactive example: http://www.asquare.net/javascript/tests/KeyCode.html

Here is a list of keyCodes (taken from: http://css-tricks.com/snippets/javascript/javascript-keycodes/)

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 35/47

7/1/2015

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

Week 1 : Introduction

Key
backspace
tab

enter

shift

ctrl

alt
pause/break
caps lock
escape
(space)
page up
page down
end

home

left arrow
up arrow
right arrow
down arrow
insert
delete

0

(= - U T - T - - T I - R 7, B - S FY T

-

Code

13
16
17
18
19
20
27
12
i3

5
36
7

39

45

49

51
52
53

25
56
=74
65
66
&7

left window key
right window key

select key
numpad 0
numpad 1
numpad 2
numpad 3
numpad 4
numpad 5
numpad &
numpad 7

Code
69
70
"
72
73
74
75
76
77
78
79
BOD
81
B2
83
84
85
B6
87
BB
B9
90
91
92
93
96
97

Key
numpad B
numpad 9
miultiply
add

subtract
decimal paint
divide

f

f2

f3

fa

f5

f6

7

fa

fa

f10

f11

f12

num lock
scroll lock
sermi-colon
equal sign
comma
dash

period
forward slash
grave accent
open bracket
back slash
tlose braket

single quote

Code
104
106
106
107
109
110
m
112
113
114
115
116
117
118
119
120
121
122
123

145
186
187
188
189

19
192
219
220
221

Keep in a JavaScript object the list of key that are pressed at any
moment

In a game, often we need to check what keys are down at a very high frequency, typically from inside the
game loop, that is running up to 60 times per second. If a spaceship is moving left, there are chances you

36/47

7/1/2015 Week 1 : Introduction

are keeping the left arrow down, and if it's firing missiles at the same time you must be also press the
spacebar like a maniac and also press the shift key to release smart bombs. Sometimes these three keys
might be down at the same time, and the game loop will have to take these three keys into account: move
the ship left, release a new missile if the previous one is out of the screen or if it reached a target, launch a
smart bomb if conditions are ok, etc...

The typical method is: store in an object the list of the keys (or mouse button or whatever game pad
button...) that are up or down at a given time. For our small game engine we will call this object
"inputStates".

We will update its content inside the different input event listeners, and we will check its value from inside
the game loop, 60 times/s.

So here are the things we have changed in our small game engine prototype (yet, far from finished):

1. We added an empty inputStates object as a global property of the game engine,

2. In the start() method, we added the event listeners for the keydown and keyup events, in each listener
we will test if the arrow keys or the space bar has been pressed or released, and we set different
properties of the inputStates object. For example if the spacebar is pressed, we do a inputStates.space
= true; if it's released we do a nputStates.space = false.

3. In the mainLoop, we added some tests to chek what keys are down, if one key is down, we draw its
name in the canvas.

Here is the online example you can try: http://jsbin.com/kafehi/9/edit

" = up
H right
i
space
FPS: 60

And here is the complete source code:

1 // Inits

2 window.onload = function init() {
3 var game = new GF();

4 game.start();

5 }i

6

7

8 // GAME FRAMEWORK STARTS HERE

9 var GF = function(){

10 // Vars relative to the canvas
11 var canvas, ctx, w, h;

12

13 // vars for counting frames/s, used by the measureFPS function
14 var frameCount = 0;

15 var lastTime;

16 var fpsContainer;

17 var fps;

18

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 37/47

7/1/2015

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Week 1 : Introduction

// vars for handling inputs
var inputStates = {};

var measureFPS = function(newTime) {

// test for the very first invocation

if(lastTime === undefined) {
lastTime = newTime;
return;

}

//calculate the difference between last & current frame
var diffTime = newTime - lastTime;

if (diffTime >= 1000) {
fps = frameCount;
frameCount = 0;
lastTime = newTime;

}

//and display it in an element we appended to the
// document in the start() function
fpsContainer.innerHTML = 'FPS: ' + fps;
frameCount++;

}i

// clears the canvas content
function clearCanvas() {
ctx.clearRect(0, 0, w, h);

}

// Functions for drawing the monster and maybe other objects
function drawMyMonster(x, y) {

// draw a big monster !

// head

// save the context
ctx.save();

// translate the coordinate system, draw relative to it
ctx.translate(x, y);

// (0, 0) is the top left corner of the monster.
ctx.strokeRect(0, 0, 100, 100);

// eyes
ctx.fillRect (20, 20, 10, 10);
ctx.fillRect (65, 20, 10, 10);

// nose
ctx.strokeRect (45, 40, 10, 40);

// mouth
ctx.strokeRect (35, 84, 30, 10);

// teeth
ctx.fillRect (38, 84, 10, 10);
ctx.fillRect (52, 84, 10, 10);

// restore the context
ctx.restore();

}
var mainLoop = function(time)
//main function, called each frame

measureFPS (time) ;

// Clear the canvas
clearCanvas();

// draw the monster

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

38/47

7/1/2015

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Week 1 : Introduction

drawMyMonster (10+Math.random()*10, 1l0+Math.random()*10);
// check inputStates
if (inputStates.left) {
ctx.fillText("left", 150, 20);
}
if (inputStates.up) {
ctx.fillText("up", 150, 50);
}
if (inputStates.right) {
ctx.fillText("right", 150, 80);
}
if (inputStates.down) {
ctx.fillText("down", 150, 120);
}
if (inputStates.space) {
ctx.fillText("space bar", 140, 150);

}

// call the animation loop every 1/60th of second
requestAnimationFrame (mainLoop) ;

}i

var start = function(){
// adds a div for displaying the fps value
fpsContainer = document.createElement('div');
document.body.appendChild(fpsContainer);

// Canvas, context etc.
canvas = document.querySelector ("#myCanvas");

// often useful
w = canvas.width;
h canvas.height;

// important, we will draw with this object
ctx = canvas.getContext('2d');

// default police for text

ctx.font="20px Arial";

//add the listener to the main, window object, and update the states
window.addEventListener('keydown', function(event){

if (event.keyCode === 37) {
inputStates.left = true;

} else if (event.keyCode === 38) {
inputStates.up = true;

} else if (event.keyCode === 39) {
inputStates.right = true;

} else if (event.keyCode === 40) {
inputStates.down = true;

} else if (event.keyCode === 32) {
inputStates.space = true;

}

}, false);

//if the key will be released, change the states object
window.addEventListener('keyup', function(event){
if (event.keyCode === 37) {
inputStates.left = false;
} else if (event.keyCode === 38) {
inputStates.up = false;
} else if (event.keyCode === 39) {
inputStates.right = false;
} else if (event.keyCode === 40) {
inputStates.down = false;
} else if (event.keyCode === 32) {
inputStates.space = false;

}
}, false);

// start the animation

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

39/47

7/1/2015

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

Week 1 : Introduction

l61 requestAnimationFrame (mainLoop) ;

162 };

163

164 //our GameFramework returns a public API visible from outside its scope
165 return {

166 start: start

167 Y

168 };

169

You may notice that on some computers / Operating systems, it is not possible to press at the same time the
up and down arrow keys, or left and right. They are mutually exclusive, however space + up + right is ok.

Dealing with mouse events

Working with mouse events means detect mouse button down/up, with identifying the button, keeping track
of mouse moves, and also get the x, y coordinate of the cursor.

Special care must be taken when getting the mouse coordinates as the HTMLS5 canvas often has default
CSS properties that would produce false coordinates. The trick to get the right x and y mouse cursor
coordinate is to use this method from the canvas API:

1 // necessary to take into account CSS boudaries
2 var rect = canvas.getBoundingClientRect();

The width and the height of the rect object must be taken into account. They correspond to the padding /
borders around the canvas. See how we deal with them in the getMousePos() function from the above
example.

Here is an online example that covers all cases correctly: http://jsbin.com/bizudu/4/edit

Mouse button 0 down at position: 221,86

Just move the mouse over the canvas, press or release mouse buttons. Notice that we keep the state of the
mouse (position, buttons down or up) in the inputStates object, in a similar way we did with the keys in the
previous section.

Here is the source code of this small test example:

var canvas, ctx;
var inputStates = {};

window.onload = function init() {
canvas = document.getElementById('myCanvas');
ctx = canvas.getContext('2d');

canvas.addEventListener('mousemove', function (evt) {
inputStates.mousePos = getMousePos(canvas, evt);

W oo JOo U & WN -

40/47

7/1/2015 Week 1 : Introduction

+ inputStates.mo

+ inputStates

10 var message = 'Mouse position: ' + inputStates.mousePos.x + ',' + inputStates.mousel
11 writeMessage(canvas, message);

12 }, false);

13

14 canvas.addEventListener('mousedown', function (evt) {
15 inputStates.mousedown = true;

16 inputStates.mouseButton = evt.button;

17 var message = "Mouse button " + evt.button + " down at position: "
18 writeMessage(canvas, message);

19 }, false);

20

21 canvas.addEventListener('mouseup', function (evt) {
22 inputStates.mousedown = false;

23 var message = "Mouse up at position: " + inputStates.mousePos.x +
24 writeMessage(canvas, message);

25 }, false);

26 };

27

28 function writeMessage(canvas, message) {

29 var ctx = canvas.getContext('2d');

30 ctx.save();

31 ctx.clearRect (0, 0, canvas.width, canvas.height);

32 ctx.font = '18pt Calibri';

33 ctx.fillStyle = 'black’';

34 ctx.fillText (message, 10, 25);

35 ctx.restore();

36}

37

38 function getMousePos(canvas, evt) {

39 // necessary to take into account CSS boudaries

40 var rect = canvas.getBoundingClientRect();

41 return {

42 x: evt.clientX - rect.left,

43 y: evt.clientY - rect.top

44 }i

45 }

46

47

Include the mouse listeners into the game engine

Now we will include these listeners into our game engine. Notice that we changed some parameters (no

need to pass the canvas as a parameter of the getMousePos function, for example).

The new online version of the game engine can be tried at: http://jsbin.com/kafehi/12/edit

x=166y =163
mousedown b0

b] £

Complete source code:

1 // Inits
2 window.onload = function init() {

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

41/47

7/1/2015 Week 1 : Introduction

3 var game = new GF();

4 game.start();

5 };

6

7

8 // GAME FRAMEWORK STARTS HERE

9 wvar GF = function(){

10 // Vars relative to the canvas

11 var canvas, ctx, w, h;

12

13 // vars for counting frames/s, used by the measureFPS function
14 var frameCount = 0;

15 var lastTime;

16 var fpsContainer;

17 var fps;

18

19 // vars for handling inputs
20 var inputStates = {};
21
22 var measureFPS = function(newTime) {
23
24 // test for the very first invocation
25 if(lastTime === undefined) {
26 lastTime = newTime;
27 return;
28 }
29
30 //calculate the difference between last & current frame
31 var diffTime = newTime - lastTime;
32
33 if (diffTime >= 1000) {
34 fps = frameCount;
35 frameCount = 0;
36 lastTime = newTime;
37 }
38

39 //and display it in an element we appended to the
40 // document in the start() function
41 fpsContainer.innerHTML = 'FPS: ' + fps;
42 frameCount++;

43 Y

44

45 // clears the canvas content

46 function clearCanvas() {

47 ctx.clearRect(0, 0, w, h);

48 }

49

50 // Functions for drawing the monster and maybe other objects
51 function drawMyMonster(x, y) {

52 // draw a big monster !

53 // head

54

55 // save the context

56 ctx.save();

57

58 // translate the coordinate system, draw relative to it
59 ctx.translate(x, y);

60

61 // (0, 0) is the top left corner of the monster.
62 ctx.strokeRect (0, 0, 100, 100);

63

64 // eyes

65 ctx.fillRect (20, 20, 10, 10);

66 ctx.fillRect (65, 20, 10, 10);

67

68 // nose

69 ctx.strokeRect (45, 40, 10, 40);

70

71 // mouth

72 ctx.strokeRect (35, 84, 30, 10);

73

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

42/47

7/1/2015 Week 1 : Introduction

74 // teeth
75 ctx.fillRect (38, 84, 10, 10);
76 ctx.fillRect(52, 84, 10, 10);
77
78 // restore the context
79 ctx.restore();
80 }
81
82 var mainLoop = function(time){
83 //main function, called each frame
84 measureFPS(time) ;
85
86 // Clear the canvas
87 clearCanvas();
88
89 // draw the monster
90 drawMyMonster (10+Math.random()*10, 1l0+Math.random()*10);
91 // check inputStates
92 if (inputStates.left) {
93 ctx.fillText ("left", 150, 20);
94 }
95 if (inputStates.up) {
96 ctx.fillText ("up", 150, 40);
97 }
98 if (inputStates.right) {
99 ctx.fillText("right", 150, 60);
100 }
101 if (inputStates.down) {
102 ctx.fillText ("down", 150, 80);
103 }
104 if (inputStates.space) {
105 ctx.fillText ("space bar", 140, 100);
106 }
107 if (inputStates.mousePos) ({
108 ctx.fillText("x = " + inputStates.mousePos.x + " y =
109 }
110 if (inputStates.mousedown) {
111 ctx.fillText ("mousedown b" + inputStates.mouseButton,
112 }
113
114 // call the animation loop every 1/60th of second
115 requestAnimationFrame (mainLoop) ;
116 }s;
117
118
119 function getMousePos(evt) {
120 // necessary to take into account CSS boudaries
121 var rect = canvas.getBoundingClientRect();
122 return {
123 x: evt.clientX - rect.left,
124 y: evt.clientY - rect.top
125 };
126 }
127
128 var start = function(){
129 // adds a div for displaying the fps value
130 fpsContainer = document.createElement('div');
131 document.body.appendChild(fpsContainer);
132
133 // Canvas, context etc.
134 canvas = document.querySelector ("#myCanvas");
135
136 // often useful
137 w = canvas.width;
138 h = canvas.height;
139
140 // important, we will draw with this object
141 ctx = canvas.getContext('2d');
142 // default police for text
143 ctx.font="20px Arial";
144

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

+ inputStates.mousePos.}

5,

180);

43/47

7/1/2015 Week 1 : Introduction

145 //add the listener to the main, window object, and update the states
146 window.addEventListener('keydown', function(event){
147 if (event.keyCode === 37) {

148 inputStates.left = true;

149 } else if (event.keyCode === 38) {

150 inputStates.up = true;

151 } else if (event.keyCode === 39) {

152 inputStates.right = true;

153 } else if (event.keyCode === 40) {

154 inputStates.down = true;

155 } else if (event.keyCode === 32) {

156 inputStates.space = true;

157 }

158 }, false);

159

160 //if the key will be released, change the states object
161 window.addEventListener('keyup', function(event){
162 if (event.keyCode === 37) {

163 inputStates.left = false;

164 } else if (event.keyCode === 38) {

165 inputStates.up = false;

166 } else if (event.keyCode === 39) {

167 inputStates.right = false;

168 } else if (event.keyCode === 40) {

169 inputStates.down = false;

170 } else if (event.keyCode === 32) {

171 inputStates.space = false;

172 }

173 }, false);

174

175 // Mouse event listeners

176 canvas.addEventListener('mousemove', function (evt) {
177 inputStates.mousePos = getMousePos(evt);

178 }, false);

179

180 canvas.addEventListener('mousedown', function (evt) {
181 inputStates.mousedown = true;

182 inputStates.mouseButton = evt.button;

183 }, false);

184

185 canvas.addEventListener('mouseup', function (evt) {
186 inputStates.mousedown = false;

187 }, false);

188

189

190 // start the animation

191 requestAnimationFrame (mainLoop) ;

192 };

193

194 //our GameFramework returns a public API visible from outside its scope
195 return {

196 start: start

197 };

198 };

Making the monster move using the arrow keys, increase its speed

when pressing a mouse button

To conclude this section, we will now use the arrow keys to move the monster up/down/left/right from the

previous examples, and make it speed up when we press a mouse button while it moves. Notice that

pressing two keys at the same time make it move diagonally.

Check this online example, we changed only a few lines of code from the previous one:

http://jsbin.com/bemebi/2/edit

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

44/47

7/1/2015 Week 1 : Introduction

We first added a variable for describing the monster :

// The monster !
var monster = {
x:10,
y:10,
speed:1
}i

Noods W N

Where monster.x and monster.y will define the current monster position, and monster.speed corresponds to
the number of pixels we will move the monster vertically or horizontally between each frames of animation
(when an arrow key is pressed). Note: this is not the best way to animate objects in a game, we will look at

a much proper solution the next week, named "time based animation".

We modified the game loop this way:

1 var mainLoop = function(time){

2 //main function, called each frame

3 measureFPS (time) ;

4

5 // Clear the canvas

6 clearCanvas();

7

8 // draw the monster

9 drawMyMonster (monster.x, monster.y);
10

11 // Check inputs and move the monster
12 updateMonsterPosition();

13

14 // call the animation loop every 1/60th of second
15 requestAnimationFrame (mainLoop) ;

16 }i

We moved all the parts that checks the input states in the updateMonsterPosition() function:

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153

1 function updateMonsterPosition() {

2 monster.speedX = monster.speedY = 0;

3 // check inputStates

4 if (inputStates.left) {

5 ctx.fillText("left", 150, 20);

6 monster.speedX = -monster.speed;
7 }

8 if (inputStates.up) {

9 ctx.fillText("up", 150, 40);

10 monster.speedY = -monster.speed;
11 }

12 if (inputStates.right) {

13 ctx.fillText("right", 150, 60);
14 monster.speedX = monster.speed;
15 }

16 if (inputStates.down) {

17 ctx.fillText ("down", 150, 80);
18 monster.speedY = monster.speed;
19 }
20 if (inputStates.space) {
21 ctx.fillText ("space bar", 140, 100);
22 }
23 if (inputStates.mousePos) {
24 ctx.fillText("x = " + inputStates.mousePos.x + " y ="
25 }
26 if (inputStates.mousedown) {
27 ctx.fillText ("mousedown b" + inputStates.mouseButton, 5,
28 monster.speed = 5;
29 } else {

30 // mouse up

31 monster.speed = 1;

+ inputStates.mousePos.y

180);

45/47

7/1/2015 Week 1 : Introduction

32 }

33

34 monster.x += monster.speedX;
35 monster.y += monster.speedY;
36

37 }

In this function we added on the fly two properties to the monster object: speedX and speedY that will
correspond to the number of pixels we will add to the x and y position of the monster.

We first set these to zero (line 2), then depending on the keyboard input states, we set them to a value equal
to monster.speed or -monster.speed depending on the keys that are being pressed (lines 4-20).

Finally, we add speedX and speedY pixels to the x and y position of the monster (line 35 and 36). As the
function is called by the game loop, of speedX or speedY are different from zero, this will change the x and
y position of the monster every frame, making it moving smoothly.

In case a mouse button is pressed or released we set the monster.speed value to +5 or to +1. This will make
the monster go faster when a mouse button is down, go back to its normal speed when no button is down.

Notice that two arrow keys can be pressed at once + the mouse down at the same time, in that case the

monster will take a diagonal direction + speed up. This is why we had to keep all the input states up to date,
and not handle single key events.

http://classroom.w3devcampus.com/mod/book/tool/print/index .php?id=2153 46/47

7/1/2015 Week 1 : Introduction

7 What's next? What is missing?

Wow, we just introduced basic concepts... many things need to be seen like:

¢ Look at what we can draw in a canvas: shapes, images, etc.

e Time based animation

¢ Look at some specific drawing techniques like animating sprites (image based animation), or
vectorial drawing,

¢ Collision detection,

¢ Sound effects and music,

¢ Game states (splash screen, welcome menu, game over, etc..)

e Persistence (save high scores)

¢ Asynchronous loading of resources at the beginning of the game (load images, sprite sheets, sounds,
etc)

¢ How to make a networked game that be played in real time by several players...

e Efc...

This will give us work for the next weeks :-)

http://classroom.w3devcampus.com/mod/book/tool/print/index.php?id=2153 47/47

