
Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

1

Java DataBase Connectivity (JDBC)

Plan

� Presentation of JDBC

� JDBC Drivers

� Work with JDBC

� Interfaces and JDBC classes

� Exceptions

� SQL requests

� Transactions and exceptions

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

2

Presentation

� JDBC (Java Data Base Connectivity) is the
basic API for accessing relational databases
with the SQL language, from Java programs

� Provided by package java.sql

� The JDBC API is nearly completely independant
from SGBDs

� Supplies homogenous access to RDBMSs, by
providing an abstraction of the targeted
databases

SQL versions supported

� First JDBC versions supported only SQL-2
Entry Level

� JDBC 2, 3 and 4 support SQL3

� JDBC 4 comes with Java 6 and add several
goodies for easier use like « automatic driver
loading » and support for LOBs, etc.

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

3

java.sql

� Many interfaces, few classes

� Interfaces = API for the developer

� JDBC do not provide the classes that
implements these interfaces, it’s the driver !

JDBC drivers

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

4

JDBC Driver

� Classes that implements JDBC interfaces

� Database dependants

� All Database vendors propose a JDBC driver

JDBC driver types

� Type 1 : JDBC-ODBC bridge

� Type 2 : uses native function from the Database
API (often written in C)

� Type 3 : allow the use of a middleware driver

� Type 4 : 100% Java driver that uses the network
protocol of the Database
� Modern drivers are all of type 4 !

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

5

Type 4 : 100 % Java with direct access to the DB

DB

Java Application

Driver in Java

Methods from JDBC driver use
sockets for communicating with
the DB

DB network protocol

Work with JDBC

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

6

Work with JDBC

� Driver classes must be in the classpath

� .java files that use JDBC must import java.sql :
import java.sql.*;

� Until JDBC 4, it was necessary to load in memory
the driver classes for example:

Class.forName("oracle.jdbc.OracleDriver");

� No need to do this anymore with JDBC 4! Examples
and explanations in a few slides…

Different steps to work with JDBC

1. Get a connection object (of type Connection)

2. Create SQL instructions (Statement ,
PreparedStatement or CallableStatement)

3. Execute these instructions :
� Query the DB (executeQuery)
� Modify the DB content (executeUpdate)
� Or any other kind of order (execute)

(4. Validate or invalidate the transaction with
commit or rollback)

5. Close the connection (close())

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

7

Classes and JDBC interfaces

Most important interfaces

� Driver : returns an instance of Connection

� Connection : connection to the DB

� Statement : SQL order

� PreparedStatement : compiled once by the driver
and may be executed many times with different
parameters

� CallableStatement : stored procedures in the DB

� ResultSet : lines that came back after a SELECT
order

� ResultSetMetaData : description of lines returned

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

8

Main classes

� DriverManager : manages drivers and connections

� Date : SQL date

� Time : SQL hours, minutes, seconds

� TimeStamp : date and hour, microsecond
accuracy,

� Types : constants for SQL types (for conversion to
Java types)

Driver Interface

� The connect method from Driver takes as
parameter a URL and other informations such
as login/password and returns an instance of
Connection

� This instance of Connection will be use to
execute requests to the DB

� connect returns null if the driver is not
correct or if parameters are not valid

� Used by DriverManager ; not visible by the
developer.

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

9

URL of a Database (datasource)

� A URL for a database looks like this:
jdbc:subprotocol:databaseName

� Example:
jdbc:oracle:thin:@sirocco.unice.fr:1521:INFO
� oracle:thin is a subprotocol (driver « thin » ;

Oracle provides also another heavier driver)
� @sirocco.unice.fr:1521:INFO designs the INFO

database located on a server named sirocco that
runs an oracle DB on port 1521

� The DriverManager class is the one to use !

� Note: with JDBC 1-3 it was necessary to load by
hand the driver class before using DriverManager.
With JDBC 4 this is useless
Class.forName("oracle . jdbc.OracleDriver");

DriverManager

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

10

Obtain a connexion

� Ask the DriverManager class through its static method
getConnection():
String url =
"jdbc:oracle:thin:@sirocco.unice.fr:1521:INFO";
Connection conn =

DriverManager.getConnection(url,
"toto", "pass");

� The DriverManager class tries all drivers registered
in the classpath until one gives a response that is not
null.

Connections and threads

� Connections are costly objects, it takes time to
obtain one,

� Furthermore, an instance of Connection cannot
be shared by several threads, it is not thread-safe!

� Best practice for web applications: use a
connexion pool provided by a DataSource
object.

� Example next slide, note that we removed all
necessary try catch finally etc.

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

11

Datasource example
import javax.sql.DataSource;

import java.sql.Date;

@ApplicationScoped @JDBC

public class BookRepositoryJDBCImpl implements BookRe pository {

@Resource(name = "jdbc/bookstore") // defined in the application server

private DataSource dataSource;

addBook(String title, String description) {

Connection connection = dataSource.getConnection();

PreparedStatement prepareStatement = connection.prepareStatement ("insert into
book(title, description, price, pubdate) values (?, ?,?,?)");

prepareStatement.setString(1, title);

prepareStatement.setString(2, description);

int rowCount = prepareStatement.executeUpdate();

connection.close();

}

DataSource

� Provides access to connections in a
shared resources environment

� Generally provides advanced features:
� Connection pooling
� PreparedStatement pooling
� Distributed transactions (XA protocol)

� Retrieved using the @Resource
annotation in Servlets, Beans, EJBs

� Or retrieved from a JNDI naming service:
Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("DataSourceNa me");

Connection c = ds.getConnection ();

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

12

ConnectionPoolDataSource
� Connection pool architecture:

A connection pool contains a group of JDBC connections that are created
when the connection pool is registered—when starting up WebLogic Server
or when deploying the connection pool to a target server or cluster.
Connection pools use a JDBC driver to create physical database
connections. Your application borrows a connection from the pool, uses it,
then returns it to the pool by closing it.

Transactions

� By default, a connection is in « auto-commit »
mode: acommit is automatically performed
after any SQL order that modifies the DB
content.

� Best practice: set this setting off
conn. setAutoCommit (false)

� The transaction will be manually validated or
invalidates using:
� conn. commit()

� conn. rollback()

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

13

Connection best practice

� Create a method that does:
� Get the connexion,
� Set the proper settings for transactions
� Begin a transaction
� Run a SQL statement, get results,
� Commit or rollback the transaction,
� Close the connection (note that in case of a

connection pool, this will not « really » close the
connection to the DB)

� We will practice that with the « BookRepository
using JDBC » exercice.

Transactions

� A transaction is a sequence of actions that
must be considered as a whole: it can be
committed or rollbacked but cannot be
partially executed

� The default mode is autocommit: each
query is committed as soon as it is send

� The Connection offers methods to manage
the transaction mode:
c.setautocommit(false);
c.commit();
c.rollback();

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

14

Interactions

� Possible interactions between transactions:
� Dirty reads (DR):

�Transactions can see uncommitted changes
� Nonrepeatable reads (NR):

�Transaction A reads a row
�Transaction B changes the row
�Transaction A reads the same row

(changed)
� Phantom reads (PR):

�Transaction A reads all rows satisfying a
where

�Transaction B inserts a row satisfying the
where

�Transaction A rereads and see the new row

Isolation levels

� Isolation level can be set on the
Connection. The higher the level, the
worse the performance, the lower the risk

� Isolation levels:
1. TRANSACTION_READ_UNCOMMITTED: DR, NR, PR
2. TRANSACTION_READ_COMMITTED: NR, PR
3. TRANSACTION_REPEATABLE_READ: PR
4. TRANSACTION_SERIALIZABLE: no interaction, each transaction totally

locks all the data it needs

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

15

� The transaction isolation level can be modified
using a method from the Connection object:

conn.setTransactionIsolation (
Connection.TRANSACTION_SERIALIZABLE) ;

Isolation level

Savepoints

� Savepoints provide fine-grained control of
transaction

� Each savepoint is represented by a named
object:
Savepoint sp1 = c.setSavepoint("SP1");

� A transaction can be then rollbacked to a
savepoint:
c.rollback(sp1);

� A savepoint can be released:
c.releaseSavepoint(sp1);

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

16

Execute a SQL order

Simple SQL order

� Use an instance of Statement created using the
createStatement() method from the Connection:

Statement stmt =
connexion.createStatement();

� When a Statement has been created, we can
use it for different kind of orders (executeQuery
or executeUpdate)

� Several statements can be retrieved from the same
connection to be used concurrently

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

17

Execution of the simple SQL order

� The method to call depends on the nature of the
SQL request:
� Search (select) : executeQuery returns a

ResultSet for processing lines one by one
� Modify data (update, insert, delete) or DDL

orders (create table,…) : executeUpdate
returns the number of lines affected

� If we don’t know at execution time the nature of
the SQL order: execute

Accessing data (SELECT)

Statement stmt = conn.createStatement();

// rset contains returned lines

ResultSet rset =

stmt.executeQuery ("SELECT nameE FROM emp");

// Get each line one by one

while (rset.next())

System.out.println (rset.getString(1));

// or . . . (rset.getString("nameE"));

stmt.close();

First column has number 1

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

18

ResultSet Interface

� executeQuery() returns an instance of
ResultSet

� ResultSet will give access of lines returned
by select

� At the beginning, ResultSet is positionned
before the first line, we must call next() first

� next() returns true if the next line exists,
and false otherwise

Interface ResultSet

� When ResultSet is positionned on one line,
the getXXX methods are used to retrieve
data:
� getXXX(int columnNumber)
� getXXX(String columnName)
� XXX is the Java type of the value we are going to

get. For example String , Int or Double

� For example, getInt returns an int

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

19

JDBC/SQL Types (class Types)

� CHAR, VARCHAR, LONGVARCHAR

� BINARY, VARBINARY, LONGVARBINARY

� BIT, TINYINT, SMALLINT, INTEGER, BIGINT

� REAL, DOUBLE, FLOAT

� DECIMAL, NUMERIC

� DATE, TIME, TIMESTAMP

� BLOB, CLOB

� ARRAY, DISTINCT, STRUCT, REF

� JAVA_OBJECT

Types

SQL3 Types

Matching types with getXXX()

� getString() can retrieve nearly any SQL type

� However, edicated methods are recommended:
� CHAR and VARCHAR : getString, LONGVARCHAR :

getAsciiStream and getCharacterStream
� BINARY and VARBINARY : getBytes,

LONGVARBINARY : getBinaryStream
� REAL : getFloat, DOUBLE and FLOAT : getDouble
� DECIMAL and NUMERIC : getBigDecimal
� DATE : getDate, TIME : getTime, TIMESTAMP :

getTimestamp

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

20

SQL Date and Java Date

� From java.util.Date to java.sql.Date ,
use the getTime() method:

� java.util.Date date = new
java.util.Date();
java.sql.Date dateSQL =

new java.sql.Date(date.getTime());
java.sql.Time time =

new Time(date.getTime());
java.sql.Timestamp time =

new Timestamp(date.getTime());

NULL value

Statement stmt = conn.createStatement();

ResultSet rset = stmt.executeQuery(

"SELECT nameE, reward FROM emp");

while (rset.next()) {

name= rset.getString("nameE");

commission = rset.getDouble("reward");

if (rset.wasNull())

System.out.println(name + ": no
reward");

else

System.out.println(name + " has reward:
" + commission + " €");

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

21

Data modification (INSERT, UPDATE, DELETE)

Statement stmt = conn.createStatement();

String city= "NICE";

int nbLinesModified = stmt.executeUpdate (

"INSERT INTO dept (dept, name, place) "

+ "VALUES (70, 'DIRECTION',"

+ "'" + city+ "')"); Do not forget
the space here!

Parameterized SQL order /
PreparedStatement

� Most DB can analyse only once a request
executed many times during a connection

� JDBC takes advantage of this with
parameterized requests assiciated to
instances of the PreparedStatement
interface (that inherits from the Statement
interface)

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

22

PreparedStatement pstmt =
conn.prepareStatement ("UPDATE emp SET sal =
?" + " WHERE name = ?");

� "?" indicates parameter locations

� This request will be executable with several
parameter sets: (2500, ‘DUPOND’), (3000,
‘DURAND’), etc.

Example

Example with parameters

PreparedStatement pstmt =
conn.prepareStatement(

"UPDATE emp SET sal = ? "

+ "WHERE nomE = ?");

for (int i=0; i<10; i++) {

pstmt.setDouble(1,employe[i].getSalaire());

pstmt.setString(2, employe[i].getNom());

pstmt.executeUpdate();

}

Starts at 1, not 0!

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

23

PreparedStatement and NULL value

� Use setNull(n, type) (type is one of the Types)
� Or pass null as a parameter if setXXX() has

an Object as parameter (i.e. setString ,
setDate ,…)

Advantages of PreparedStatement

� Faster if used several times, cacheable in
case of using a connection pool, even after
the connection has been closed on client
side,

� Better portability as setXXX methods handle
differences between DBRMs

� They protect agains SQL injection

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

24

Callable Statements

� Like PreparedStatements ,
CallableStatements are compiled but also
grouped in the DBRM.

� They are used to call stored procedures,

� Less network access means better
performance but as callable statements very
often uses particularity of DBRMs, the
portability is affected.

Exemple of a stored procedure (Oracle)

create or replace procedure augment

(oneDept in integer, percentage in
number,

cost out number) is

begin

select sum(sal) * percentage / 100

into cost

from emp

where dept = oneDept;

update emp

set sal = sal * (1 + percentage /
100)

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

25

Creation of a callable statement

� CallableStatement inherits from
PreparedStatement

� An instance of CallableStatement created
by calling the prepareCall method from
Connection interface

� This method accepts as parameter a String that
describes how to call the stored procedure and
if it returns a value or not.

� Not standardized, differs from one DBRM to
another

� JDBC uses its own syntax to address this problem
� If stored procedure returns a value:

{ ? = call procedure-name(?, ?,...) }
� Returns no value:

{ call interface (?, ?,...) }
� No parameter:

{ call interface }

Syntax for callable statements

Driver will
translate

into
DBRM
syntax

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

26

Example

CallableStatement cstmt =
conn.prepareCall ("{? = call

augment(?,?)}");

Execution of a callable statement

1. In and out parameters passed with setXXX
Paramètres types for « out » and« in/out » set
with registerOutParameter method

2. Execute with either executeQuery ,
executeUpdate or execute,

3. « out », « in/out », and eventually the return
value, collected with getXXX

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

27

R. Grin JDBC page 53

Example

CallableStatement csmt = conn.prepareCall (
"{ call augment(?, ?, ?) }");

// 2 digits after comma for third parameter

csmt.registerOutParameter(3 , Types.DECIMAL, 2);

// Augment 2,5 % salaries from dept number 10

csmt.setInt(1, 10);

csmt.setDouble(2, 2.5);

csmt.executeQuery(); // or execute()

double cost = csmt.getDouble(3);

System.out.println("Total cost of augmentation:
" + cost);

MetaData

� JDBC allows getting informations about the data we
retrieved with a SELECT (interface
ResultSetMetaData),

� Also about the Database itself (interface
DatabaseMetaData)

� Results differ from one DBRM to another

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

28

ResultSetMetaData

ResultSet rs =

stmt.executeQuery("SELECT * FROM emp");

ResultSetMetaData rsmd = rs.getMetaData();

int nbColumns = rsmd.getColumnCount();

for (int i = 1; i <= nbColumns; i++) {

String typeColumn = rsmd.getColumnTypeName(i) ;

String nomColumn = rsmd.getColumnName(i) ;

System.out.println("Column " + i + " of name "

+ nomColumn + " of type "

+ typeColumn);

}

DatabaseMetaData

private DatabaseMetaData metaData;

private java.awt.List listTables = new
List(10);

. . .

metaData = conn.getMetaData();

String[] types = { "TABLE", "VIEW" };

ResultSet rs =

metaData.getTables (null, null, "%", types);

String tablesNames;

while (rs.next()) {

nomTable = rs.getString(3);

Joker for table
and view names

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

29

Auto generated keys

� Execute (or prepare and execute) a
statement specifying your will or the keys
you want to retrieve:
� ps = c.prepareStatement("…",

Statement.RETURN_GENERATED_KEYS);

� s.executeUpdate(“…”);

� s.executeUpdate("…", {"Client_ID"});

� Retrieve the keys:
ResultSet r = s.getGeneratedKeys();

Batch updates

� To optimize performances, you may
execute a set of updates at once

� You add your updates to the statement:
s.addBatch("INSERT INTO t VALUES (1)");

� For prepared and callable statements,
you add a set of parameter values:
ps.setInt(1, 453);
ps.addBatch();

� The execution returns all the results:
int[] tab = s.executeBatch();

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

30

More on ResultSet

� Interface providing methods for
manipulating the result of executed
queries

� ResultSet can have different
functionality, based on their
characteristics:
� Type
� Concurrency
� Holdability

Type

� TYPE_FORWARD_ONLY:
� Forward only (only the next() method is

available)
� Does not reflect changes in the database

� TYPE_SCROLL_INSENSITIVE:
� Scrollable
� Does not reflect changes in the database

� TYPE_SCROLL_SENSITIVE:
� Scrollable
� Reflects changes in the database

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

31

Concurrency

� CONCUR_READ__ONLY:
� Default concurrency
� The ResultSet cannot be updated

� CONCUR_UPDATABLE:
� The ResultSet can be updated

Holdability

� HOLD_CURSORS_OVER_COMMIT:
� The ResultSets are held open when a commit

operation is performed on the connection

� CLOSE_CURSORS_AT_COMMIT:
� The ResultSets are closed when a commit

operation is performed on the connection

� The default holdability is implementation
defined

Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

32

Retrieving information

� The ResultSet provides methods to move
the cursor:
� first(), next(), previous(), last(), beforeFirst(),

afterLast()
� relative(int), absolute(int)

� The methods getXXX() retrieve the value in
the column given by number or name to the
Java type XXX

� The method wasNull indicates whether the
latest retrieved value was null

JDBC advanced: RowSet

� The RowSet extends the ResultSet

� It is the representation of the result of a
SELECT query

� It holds all the connection information it
needs (URL, user…) to be autonomous

� The RowSet is a Javabean, it generates
events when a modification of its values
occurs

� Good tutorial in french:
http://java.developpez.com/faq/jdbc/?page=
generalitesrowset#defRowSet

