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Java DataBase Connectivity (JDBC)

Plan

� Presentation of JDBC

� JDBC Drivers 

� Work with JDBC

� Interfaces and JDBC classes

� Exceptions

� SQL requests

� Transactions and exceptions
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Presentation

� JDBC (Java Data Base Connectivity) is the 
basic API for accessing relational databases
with the SQL language, from Java programs

� Provided by package java.sql

� The JDBC API is nearly completely independant
from SGBDs

� Supplies homogenous access to RDBMSs, by 
providing an abstraction of the targeted 
databases

SQL versions supported

� First JDBC versions supported only SQL-2 
Entry Level

� JDBC 2, 3 and 4 support SQL3

� JDBC 4 comes with Java 6 and add several
goodies for easier use like « automatic driver 
loading » and support for LOBs, etc. 
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java.sql

� Many interfaces, few classes

� Interfaces = API for the developer

� JDBC do not provide the classes that
implements these interfaces, it’s the driver !

JDBC drivers
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JDBC Driver

� Classes that implements JDBC interfaces

� Database dependants

� All Database vendors propose a JDBC driver

JDBC driver types

� Type 1 : JDBC-ODBC bridge

� Type 2 : uses native function from the Database
API (often written in C)

� Type 3 : allow the use of a middleware driver

� Type 4 : 100% Java driver that uses the network 
protocol of the Database
� Modern drivers are all of type 4 !
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Type 4 : 100 % Java with direct access to the DB

DB

Java Application

Driver in Java

Methods from JDBC driver use 
sockets for communicating with
the DB

DB network protocol

Work with JDBC
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Work with JDBC

� Driver classes must be in the classpath

� .java files that use JDBC must import java.sql :
import java.sql.*;

� Until JDBC 4, it was necessary to load in memory
the driver classes for example:

Class.forName("oracle.jdbc.OracleDriver");

� No need to do this anymore with JDBC 4! Examples
and explanations in a few slides…

Different steps to work with JDBC

1. Get a connection object (of type Connection )

2. Create SQL instructions (Statement , 
PreparedStatement or CallableStatement )

3. Execute these instructions :
� Query the DB (executeQuery ) 
� Modify the DB content (executeUpdate )
� Or any other kind of order (execute )

(4. Validate or invalidate the transaction with
commit or rollback )

5. Close the connection (close() )
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Classes and JDBC interfaces

Most important interfaces

� Driver : returns an instance of Connection

� Connection : connection to the DB

� Statement : SQL order

� PreparedStatement : compiled once by the driver 
and may be executed many times with different 
parameters

� CallableStatement : stored procedures in the DB

� ResultSet : lines that came back after a SELECT 
order

� ResultSetMetaData : description of lines returned
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Main classes

� DriverManager : manages drivers and connections

� Date : SQL date 

� Time : SQL hours, minutes, seconds 

� TimeStamp : date and hour, microsecond
accuracy,

� Types : constants for SQL types (for conversion to 
Java types)

Driver Interface

� The connect method from Driver takes as 
parameter a URL  and other informations such
as login/password and returns an instance of 
Connection

� This instance of Connection will be use to 
execute requests to the DB

� connect returns null if the driver is not 
correct or if parameters are not valid

� Used by DriverManager ; not visible by the 
developer. 
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URL of a Database (datasource)

� A URL for a database looks like this:
jdbc:subprotocol:databaseName

� Example:
jdbc:oracle:thin:@sirocco.unice.fr:1521:INFO
� oracle:thin is a subprotocol (driver « thin » ; 

Oracle provides also another heavier driver)
� @sirocco.unice.fr:1521:INFO designs the INFO 

database located on a server named sirocco that
runs an oracle DB on port 1521

� The DriverManager class is the one to use ! 

� Note: with JDBC 1-3 it was necessary to load by 
hand the driver class before using DriverManager. 
With JDBC 4 this is useless
Class.forName("oracle . jdbc.OracleDriver");

DriverManager
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Obtain a connexion

� Ask the DriverManager class through its static method
getConnection():
String url =  
"jdbc:oracle:thin:@sirocco.unice.fr:1521:INFO";
Connection conn =

DriverManager.getConnection(url,
"toto", "pass");

� The DriverManager class tries all drivers registered
in the classpath until one gives a response that is not 
null.

Connections and threads

� Connections are costly objects, it takes time to 
obtain one,

� Furthermore, an instance of Connection cannot
be shared by several threads, it is not thread-safe!

� Best practice for web applications: use a 
connexion pool provided by a DataSource
object. 

� Example next slide, note that we removed all 
necessary try catch finally etc.
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Datasource example
import javax.sql.DataSource;

import java.sql.Date;

@ApplicationScoped @JDBC

public class BookRepositoryJDBCImpl implements BookRe pository {

@Resource(name = "jdbc/bookstore") // defined in the application server

private DataSource dataSource;

addBook(String title, String description) {

Connection connection = dataSource.getConnection();

PreparedStatement prepareStatement = connection.prepareStatement ("insert into
book(title, description, price, pubdate) values (?, ?,?,?)");

prepareStatement.setString(1, title);

prepareStatement.setString(2, description);

int rowCount = prepareStatement.executeUpdate();

connection.close();

}

DataSource

� Provides access to connections in a 
shared resources environment

� Generally provides advanced features:
� Connection pooling
� PreparedStatement pooling
� Distributed transactions (XA protocol)

� Retrieved using the @Resource 
annotation in Servlets, Beans, EJBs

� Or retrieved from a JNDI naming service:
Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("DataSourceNa me");

Connection c = ds.getConnection ();
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ConnectionPoolDataSource
� Connection pool architecture:

A connection pool contains a group of JDBC connections that are created 
when the connection pool is registered—when starting up WebLogic Server 
or when deploying the connection pool to a target server or cluster. 
Connection pools use a JDBC driver to create physical database 
connections. Your application borrows a connection from the pool, uses it, 
then returns it to the pool by closing it.

Transactions

� By default, a connection is in « auto-commit » 
mode: acommit is automatically performed
after any SQL order that modifies the DB 
content. 

� Best practice: set this setting off
conn. setAutoCommit (false)

� The transaction will be manually validated or 
invalidates using: 
� conn. commit()

� conn. rollback()
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Connection best practice

� Create a method that does:
� Get the connexion,
� Set the proper settings for transactions
� Begin a transaction
� Run a SQL statement, get results,
� Commit or rollback the transaction,
� Close the connection (note that in case of a 

connection pool, this will not « really » close the 
connection to the DB)

� We will practice that with the « BookRepository
using JDBC » exercice.

Transactions

� A transaction is a sequence of actions that 
must be considered as a whole: it can be 
committed or rollbacked but cannot be 
partially executed

� The default mode is autocommit: each 
query is committed as soon as it is send

� The Connection offers methods to manage 
the transaction mode:
c.setautocommit(false);
c.commit();
c.rollback();



Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

14

Interactions

� Possible interactions between transactions:
� Dirty reads (DR):

�Transactions can see uncommitted changes
� Nonrepeatable reads (NR):

�Transaction A reads a row
�Transaction B changes the row
�Transaction A reads the same row 

(changed)
� Phantom reads (PR): 

�Transaction A reads all rows satisfying a 
where

�Transaction B inserts a row satisfying the 
where

�Transaction A rereads and see the new row

Isolation levels

� Isolation level can be set on the 
Connection. The higher the level, the 
worse the performance, the lower the risk

� Isolation levels:
1. TRANSACTION_READ_UNCOMMITTED: DR, NR, PR
2. TRANSACTION_READ_COMMITTED: NR, PR
3. TRANSACTION_REPEATABLE_READ: PR
4. TRANSACTION_SERIALIZABLE: no interaction, each transaction totally 

locks all the data it needs
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� The transaction isolation level can be modified
using a method from the Connection object:

conn.setTransactionIsolation (
Connection.TRANSACTION_SERIALIZABLE) ;

Isolation level

Savepoints

� Savepoints provide fine-grained control of 
transaction

� Each savepoint is represented by a named 
object:
Savepoint sp1 = c.setSavepoint("SP1");

� A transaction can be then rollbacked to a 
savepoint:
c.rollback(sp1);

� A savepoint can be released:
c.releaseSavepoint(sp1);
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Execute a SQL order

Simple SQL order

� Use an instance of Statement created using the 
createStatement() method from the Connection:

Statement stmt = 
connexion.createStatement();

� When a Statement has been created, we can
use it for different kind of orders (executeQuery
or executeUpdate )

� Several statements can be retrieved from the same 
connection to be used concurrently
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Execution of the simple SQL order

� The method to call depends on the nature of the 
SQL request: 
� Search (select) : executeQuery returns a 

ResultSet for processing lines one by one
� Modify data (update, insert, delete) or DDL 

orders (create table,…) : executeUpdate
returns the number of lines affected

� If we don’t know at execution time the nature of 
the SQL order: execute

Accessing data (SELECT)

Statement stmt = conn.createStatement();

// rset contains returned lines

ResultSet rset =

stmt.executeQuery ("SELECT nameE FROM emp");

// Get each line one by one

while (rset.next())

System.out.println (rset.getString(1));

// or . . . (rset.getString("nameE"));

stmt.close();

First column has number 1
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ResultSet Interface 

� executeQuery() returns an instance of 
ResultSet

� ResultSet will give access of lines returned
by select

� At the beginning, ResultSet is positionned
before the first line, we must call next() first

� next() returns true if the next line exists, 
and false otherwise

Interface ResultSet

� When ResultSet is positionned on one line, 
the getXXX methods are used to retrieve
data:
� getXXX(int columnNumber)
� getXXX(String columnName) 
� XXX is the Java type of the value we are going to 

get. For example String , Int or Double

� For example, getInt returns an int
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JDBC/SQL Types (class Types )

� CHAR, VARCHAR, LONGVARCHAR

� BINARY, VARBINARY, LONGVARBINARY

� BIT, TINYINT, SMALLINT, INTEGER, BIGINT

� REAL, DOUBLE, FLOAT

� DECIMAL, NUMERIC

� DATE, TIME, TIMESTAMP

� BLOB, CLOB

� ARRAY, DISTINCT, STRUCT, REF

� JAVA_OBJECT

Types

SQL3 Types

Matching types with getXXX()

� getString() can retrieve nearly any SQL type

� However, edicated methods are recommended:
� CHAR and VARCHAR : getString, LONGVARCHAR :

getAsciiStream and getCharacterStream
� BINARY and VARBINARY : getBytes,

LONGVARBINARY : getBinaryStream
� REAL : getFloat, DOUBLE and FLOAT : getDouble
� DECIMAL and NUMERIC : getBigDecimal
� DATE : getDate, TIME : getTime, TIMESTAMP :

getTimestamp
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SQL Date and Java Date

� From java.util.Date to java.sql.Date , 
use the getTime() method:

� java.util.Date date = new 
java.util.Date();
java.sql.Date dateSQL = 

new java.sql.Date(date.getTime());
java.sql.Time time =

new Time(date.getTime());
java.sql.Timestamp time =

new Timestamp(date.getTime());

NULL value

Statement stmt = conn.createStatement();

ResultSet rset = stmt.executeQuery(

"SELECT nameE, reward FROM emp");

while (rset.next()) {

name= rset.getString("nameE");

commission = rset.getDouble("reward");

if ( rset.wasNull() )

System.out.println(name + ": no 
reward");

else

System.out.println(name + " has reward: 
" + commission + " €");
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Data modification (INSERT, UPDATE, DELETE)

Statement stmt = conn.createStatement();

String city= "NICE";

int nbLinesModified = stmt.executeUpdate (

"INSERT INTO dept (dept, name, place) "

+ "VALUES (70, 'DIRECTION'," 

+ "'" + city+ "')"); Do not forget
the space here!

Parameterized SQL order / 
PreparedStatement

� Most DB can analyse only once a request
executed many times during a connection

� JDBC takes advantage of this with
parameterized requests assiciated to 
instances of the PreparedStatement
interface (that inherits from the Statement
interface)
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PreparedStatement pstmt = 
conn.prepareStatement ("UPDATE emp SET sal = 
?" + " WHERE name = ?");

� "?" indicates parameter locations 

� This request will be executable with several
parameter sets: (2500, ‘DUPOND’), (3000, 
‘DURAND’), etc.

Example

Example with parameters

PreparedStatement pstmt = 
conn.prepareStatement(

"UPDATE emp SET sal = ? "

+ "WHERE nomE = ?");

for (int i=0; i<10; i++) {

pstmt.setDouble(1,employe[i].getSalaire());

pstmt.setString(2, employe[i].getNom());

pstmt.executeUpdate();

}

Starts at 1, not 0!
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PreparedStatement and  NULL value

� Use setNull(n, type) (type is one of the Types ) 
� Or pass null as a parameter if setXXX() has 

an Object as parameter (i.e. setString , 
setDate ,…)

Advantages of PreparedStatement

� Faster if used several times, cacheable in 
case of using a connection pool, even after
the connection has been closed on client 
side,

� Better portability as setXXX methods handle
differences between DBRMs

� They protect agains SQL injection
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Callable Statements

� Like PreparedStatements , 
CallableStatements are compiled but also
grouped in the DBRM.

� They are used to call stored procedures,

� Less network access means better
performance but as callable statements very
often uses particularity of DBRMs, the 
portability is affected.

Exemple of a stored procedure (Oracle)

create or replace procedure augment

(oneDept in integer, percentage in 
number,

cost out number) is

begin

select sum(sal) * percentage / 100

into cost

from emp

where dept = oneDept;

update emp

set sal = sal * (1 + percentage / 
100)
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Creation of a callable statement

� CallableStatement inherits from
PreparedStatement

� An instance of CallableStatement created
by calling the prepareCall method from
Connection interface 

� This method accepts as parameter a String that
describes how to call the stored procedure and 
if it returns a value or not.

� Not standardized, differs from one DBRM to 
another

� JDBC uses its own syntax to address this problem
� If stored procedure returns a value:

{ ? = call procedure-name(?, ?,...) }
� Returns no value:

{ call interface (?, ?,...) }
� No parameter:

{ call interface }

Syntax for callable statements

Driver will
translate 

into
DBRM 
syntax
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Example

CallableStatement cstmt =
conn.prepareCall ("{? = call                   

augment(?,?)}");

Execution of a callable statement

1. In and out parameters passed with setXXX
Paramètres types for « out » and« in/out » set 
with registerOutParameter method

2. Execute with either executeQuery , 
executeUpdate or execute, 

3. « out », « in/out », and eventually the return 
value,  collected with getXXX
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R. Grin JDBC page 53

Example

CallableStatement csmt = conn.prepareCall (
"{ call augment(?, ?, ?) }");

// 2 digits after comma for third parameter

csmt.registerOutParameter(3 , Types.DECIMAL, 2);

// Augment 2,5 % salaries from dept number 10

csmt.setInt(1, 10);

csmt.setDouble(2, 2.5);

csmt.executeQuery(); // or execute()

double cost = csmt.getDouble(3);

System.out.println("Total cost of augmentation: 
" + cost );

MetaData

� JDBC allows getting informations about the data we
retrieved with a SELECT (interface 
ResultSetMetaData ),

� Also about the Database itself (interface 
DatabaseMetaData )

� Results differ from one DBRM to another
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ResultSetMetaData

ResultSet rs =

stmt.executeQuery("SELECT * FROM emp");

ResultSetMetaData rsmd = rs.getMetaData();

int nbColumns = rsmd.getColumnCount();

for (int i = 1; i <= nbColumns; i++) {

String typeColumn = rsmd.getColumnTypeName(i) ;

String nomColumn = rsmd.getColumnName(i) ;

System.out.println("Column " + i + " of name "

+ nomColumn + " of type " 

+ typeColumn);

}

DatabaseMetaData

private DatabaseMetaData metaData;

private java.awt.List listTables = new 
List(10);

. . .

metaData = conn.getMetaData();

String[] types = { "TABLE", "VIEW" };

ResultSet rs =

metaData.getTables (null, null, "%", types);

String tablesNames;

while (rs.next()) {

nomTable = rs.getString(3);

Joker for table 
and view names



Cours EJB/J2EE
Copyright Michel Buffa

12/03/2013

29

Auto generated keys

� Execute (or prepare and execute) a 
statement specifying your will or the keys 
you want to retrieve:
� ps = c.prepareStatement("…", 

Statement.RETURN_GENERATED_KEYS);

� s.executeUpdate(“…”);

� s.executeUpdate("…", {"Client_ID"});

� Retrieve the keys:
ResultSet r = s.getGeneratedKeys();

Batch updates

� To optimize performances, you may 
execute a set of updates at once

� You add your updates to the statement:
s.addBatch("INSERT INTO t VALUES (1)");

� For prepared and callable statements, 
you add a set of parameter values:
ps.setInt(1, 453);
ps.addBatch();

� The execution returns all the results:
int[] tab = s.executeBatch();
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More on ResultSet

� Interface providing methods for 
manipulating the result of executed 
queries

� ResultSet can have different 
functionality, based on their 
characteristics:
� Type
� Concurrency
� Holdability

Type

� TYPE_FORWARD_ONLY:
� Forward only (only the next() method is 

available)
� Does not reflect changes in the database

� TYPE_SCROLL_INSENSITIVE:
� Scrollable
� Does not reflect changes in the database

� TYPE_SCROLL_SENSITIVE:
� Scrollable
� Reflects changes in the database
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Concurrency

� CONCUR_READ__ONLY:
� Default concurrency
� The ResultSet cannot be updated

� CONCUR_UPDATABLE:
� The ResultSet can be updated

Holdability

� HOLD_CURSORS_OVER_COMMIT:
� The ResultSets are held open when a commit 

operation is performed on the connection

� CLOSE_CURSORS_AT_COMMIT:
� The ResultSets are closed when a commit 

operation is performed on the connection

� The default holdability is implementation 
defined
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Retrieving information

� The ResultSet provides methods to move 
the cursor:
� first(), next(), previous(), last(), beforeFirst(), 

afterLast()
� relative(int), absolute(int)

� The methods getXXX() retrieve the value in 
the column given by number or name to the 
Java type XXX

� The method wasNull indicates whether  the 
latest retrieved value was null

JDBC advanced: RowSet

� The RowSet extends the ResultSet

� It is the representation of the result of a 
SELECT query

� It holds all the connection information it 
needs (URL, user…) to be autonomous

� The RowSet is a Javabean, it generates 
events when a modification of its values 
occurs

� Good tutorial in french: 
http://java.developpez.com/faq/jdbc/?page=
generalitesrowset#defRowSet


